Thermodynamic Aspects of Liquid Phase Sintering B-Containing P/M Stainless Steels

Article Preview

Abstract:

Being an effective sintering enhancer boron is gaining relevance for obtaining high density PM steels. Thermodynamic calculations are an important tool for studying the roll of alloying elements in the formation of a liquid during sintering. In the present work, the system Fe-Cr-B was obtained by combining up to date thermodynamic descriptions for the subsystems Fe-Cr, Cr-B and B-Cr. The calculations were carried out with Thermo-Calc software to predict isothermal sections for the ternary diagram for 1210 and 1250°C. The analysis of the isothermal sections indicates that the solid phases in equilibrium with the liquid are M2B and a-BCC solid solution. The generation of the liquid is based on a eutectic reaction (Lða+(FeCr)2B) involving the mixed borides previously formed. On the other hand, simulations for PM steels with constant boron but higher chromium content allowed realising that the formation of the liquid may be completely inhibited, within the temperature range under consideration, as materials with too high Cr/Fe ratios are used. This study was also supported by selected experiments which were in excellent agreement with the thermodynamic calculations.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1164-1170

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. S. Nayar, B. Wasiczko, Metal Powder Report 45, 611 (1990).

Google Scholar

[2] M. C. Baran, A. E. Segall, B. A. Shaw, H. M. Kopech, T. E. Haberberger, Adv. in Powder Met. and Particulate Materials, Chicago IL 1997, 1, 37-42.

Google Scholar

[3] K. T. Kim, Y. C. Jeon, Materials Science and Engineering A 245, 64 (1998).

Google Scholar

[4] J. M. Capus, Advanced Materials and Processes 158, 57 (2000).

Google Scholar

[5] P. K. Samal, Key Engineering Materials 189-191, 328 (2001).

Google Scholar

[6] R. M. German, K. A. D'Angelo, Int. Met. Rev. 29, 249 (1984).

Google Scholar

[7] M. Sarasola, T. Gómez-Acebo, F. Castro, Acta Mat., 52, 4615 (2004).

Google Scholar

[8] K. Koichu, N. Mitsuru, H. Hiroshi, Funtai Oyobi Fummatsu Yakin/J. of the Jpn. Soc. of Powder and Powder Met. 47, 1091 (2000).

Google Scholar

[9] K. S. Narasimhan, Materials Chemistry and Physics 67, 56 (2001).

Google Scholar

[10] D. S. Madan, The Int. J. of Powder Met. 27, 339 (1991).

Google Scholar

[11] P.E. Busy, M. E. Warga, C. Wells, J. of Metals Trans. AIME Nov., 1463 (1953).

Google Scholar

[12] B. Hallemans, P. Wollants, J. R. Roos, Z. Metallkunde 85 (10), 676 (1994).

Google Scholar

[13] S. K. Jensen, E. Maahn, World Cong. on PM, Paris 1994, 3, 2113-2116.

Google Scholar

[14] A. Molinari, G. Straffelini, T. Pieczonka, J. Kazior, Int. J. of Powder Met. 34, 21 (1998).

Google Scholar

[15] P. K. Samal, J. B. Terrel, Int. Conf. on Powder Met. & Particulate Materials, New York 2000, 7, 17-31.

Google Scholar

[16] T. Pieczonka, J. Kazior, A. Tiziani, A. Molinari, J. of Mats. Proc. Technol. 64, 327 (1997).

Google Scholar

[17] C. Schade, J. Schaberl, S. N. Thakur, V. C. Dongre, Int. Conf. on Powder Met. & Particulate Mats., Montreal (2005).

Google Scholar

[18] L. Lozada, F. Castro, Adv. in Powder Met and Particulate Mater. 5, 129 (2008).

Google Scholar

[19] C. Tojal, T. Gómez-Acebo, F. Castro, Materials Science Forum 534-536, 661 (2007).

DOI: 10.4028/www.scientific.net/msf.534-536.661

Google Scholar

[20] R. M. German, The Int. J. of Powder Met and Powder Technol. 19, 277 (1983).

Google Scholar

[21] R. Tardon, R. M. German, Int J Powder Metall 34, 40 (1998).

Google Scholar

[22] J. Kazior, M. Nykiel, T. Pieczonka, T. Marcu Puscas, A. Molinari, Journal of Materials Processing Technology 157-158, 712 (2004).

DOI: 10.1016/j.jmatprotec.2004.07.140

Google Scholar

[23] H. Danninger, G. Jangg, M. Giahi, Mat. -wiss. u. Werkstofftech 19, 205 (1988).

DOI: 10.1002/mawe.19880190607

Google Scholar

[24] M. Sarasola, S. Sainz, F. Castro, Euro PM2005, Prague 2005, 1, 349-356.

Google Scholar

[25] T. Gómez-Acebo, M. Sarasola, F. Castro, Calphad 27, 325 (2003).

Google Scholar

[26] Y. Yang, Y. A. Chang, Intermetallics 13, 121 (2005).

Google Scholar

[27] M. Morishita, S. K. Koyama, Yagi, G. Zhang, J. Alloys and Compounds 314, 212 (2001).

Google Scholar

[28] V. G. Kudin, V. A. Makara, Inorganic Materials 3(3), 216 (2002).

Google Scholar

[29] L. M. Pan, PhD thesis, Univ. of Surrey (1992).

Google Scholar

[30] C. E. Campbell, U. R. Kattner, Calphad 26(3), 477 (2002).

Google Scholar

[31] J. O. Anderson, B. Sundman, Calphad 11, 83 (1987).

Google Scholar

[32] M. Hillert, C. Qui, Met. Trans 22A, 2187 (1991).

Google Scholar

[33] H. L. Lukas, S. G. Fries, B. Sundman, Computational thermodynamics: The Calphad Method, Cambridge University Press (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar