Kinetics of the Austenite-Ferrite Transformation with and without Applied Stress

Article Preview

Abstract:

The formation of ferrite (α) from austenite (γ) and vice versa, upon thermo-mechanical processing of steels, are phase transformations of great technological importance. Often these transformations occur in the presence of externally or internally imposed stress. This paper provides an overview of recent research on the quantitative analysis of the transformation kinetics of the γ®a and a®g transformations subjected to uniaxial compressive stress below the yield stress of g and a, based on the application of the high-resolution differential dilatometry and the modular model of transformation kinetics. The application of uniaxially compressive stresses leads to antagonistic effects on the transformation kinetics: the stress applied upon the γ®a transformation prompts the transformation, while it obstructs the a®g transformation. These results can be quantitatively discussed in terms of chemical driving forces and transformation-induced deformation energies.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1207-1213

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.E. Dieter: Mechanical Metallurgy (McGraw-Hill Book Company, London 1998).

Google Scholar

[2] R.C. Dykhuizen, C.V. Robina, G.A. Knorovsky: Metall. Mater. Trans. Vol. 30B (1999), p.107.

Google Scholar

[3] F.G. Caballero, C. Capdevia, C.G. Andrses: Mater. Sci . & Techno. Vol. 17 (2001), p.1114.

Google Scholar

[4] A.I. Katsamas: Surface & Coating Technology Vol. 201 (2007), p.6414.

Google Scholar

[5] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Phil. Mag. A Vol. 84 (2004), p.1853.

Google Scholar

[6] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Acta Mater. Vol. 52 (2004), p.2549.

Google Scholar

[7] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Acta Mater. Vol. 51 (2003), p.507.

Google Scholar

[8] Y.C. Liu, D.J. Wang, F. Sommer, et al: Acta Mater. Vol. 56 (2008), p.3833.

Google Scholar

[9] G.I. Rees, P.H. Shipway: Mater. Sci. Eng. A Vol. 223 (1997), p.168.

Google Scholar

[10] G.W. Greenwood, R.H. Johnson: Proc. R. Soc. London A Vol. 283 (1965), p.403.

Google Scholar

[11] H.N. Han, J.K. Lee, D.W. Suh, et al: Philo. Mag. Vol. 87 (2007), 159.

Google Scholar

[12] G. Mohapatra, F. Sommer, E.J. Mittemeijer: Acta Mater. Vol. 55 (2007), p.4359.

Google Scholar

[13] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Acta Mater. Vol. 58 (2010), p.753.

Google Scholar

[14] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Acta Mater. Vol. 57 (2009), p.2858.

Google Scholar

[15] T.B. Massalski, J.H. Perepezko, J. Jaklovsky: Mat. Sci. Eng. Vol. 18 (1975), p.193.

Google Scholar

[16] A. Borgenstam, M. Hillert, Acta Mater. Vol. 48 (2000), p.2765.

Google Scholar

[17] Y.Y. Chuang, Y.A. Chang, R. Schmid, et al: Metal. Trans. A Vol. 17 (1985), p.1361.

Google Scholar

[18] A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: J. Mater. Sci. Vol. 37 (2002), p.1321.

Google Scholar

[19] F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer: Inter. Mater. Rev. Vol. 52 (2007), p.193.

Google Scholar

[20] Y.C. Liu, F. Sommer, E.J. Mittemeijer: Thermochimica Acta Vol. 413 (2004), p.215.

Google Scholar

[21] M. Onink, F.D. Tichelaar, C.M. Brakman, et al: J. Mater. Sci. Vol. 30 (1995), p.6223.

Google Scholar

[22] T. Watanabe, K. Obara, S. Tsurekawa et al: Z. Metallkde Vol. 96 (2005), p.1196.

Google Scholar

[23] M. Hillert: Metal. Trans. A Vol. 6 (1975), p.5.

Google Scholar

[24] Z. Yang, R.A. Johnson. Modelling & Simulation in Mater. Sci. & Eng. Vol. 1 (1993), p.707.

Google Scholar