Analytical Modeling of Austenite Growth and Phase Evolution during Reverse Transformation from Pearlite in High Carbon Steels

Article Preview

Abstract:

Based on an analytical one-dimensional model, austenite growth into pearlite lamella and the corresponding phase evolution during isothermal reverse transformation to austenite at 1000-1183 K in Fe-C fully pearlitic steels containing 0.6-1.0 mass% C (in the austenite single phase field of Fe-C phase diagram) were simulated. It was found that the rate of austenite growth into ferrite increases faster with increasing reversion temperature than into cementite. Three types of phase evolution dependent on reversion temperature and carbon content were classified: 1) cementite rather than ferrite disappears first; 2) ferrite and cementite simultaneously disappear; 3) ferrite rather than cementite disappears first. The type of phase evolution in a hypoeutectoid steel heated above its Ae3 temperature possibly changes in the order of 1), 2) and 3) as the reversion temperature increases. For eutectoid and hypereutectoid steels, the phase evolution during isothermal reversion always obeys the type 3).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1201-1206

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Roberts and R.F. Mehl: Trans. ASM Vol. 31 (1943), p.613.

Google Scholar

[2] C.R. Brooks: Principles of the Austenitization of Steels (Elsevier Applied Science, London 1992).

Google Scholar

[3] G.R. Speich and A. Szirmae: Trans. TMS-AIME Vol. 245 (1969), p.1063.

Google Scholar

[4] L.E. Samuels: Light Microscopy of Carbon Steels (ASM International 1999).

Google Scholar

[5] Z. -D. Li, G. Miyamoto, Z. -G. Yang and T. Fururhara: Scr. Mater. Vol. 60 (2009), p.485.

Google Scholar

[6] D.V. Shtansky, K. Nakai and Y. Ohmori: Acta Metall. Vol. 47 (1999), p.2619.

Google Scholar

[7] M. Hillert, K. Nilsson and L-E. Törndahl: JISI Vol. 209 (1971), p.49.

Google Scholar

[8] W. Kapturkiewicz, E. Fraś and A.A. Burbelko: Mater. Sci. Eng. A Vol. 413-414 (2005), p.352.

Google Scholar

[9] Z. -D. Li, G. Miyamoto, N. Kamikawa and T. Furuhara: CAMP-ISIJ Vol. 22 (2009), p.533.

Google Scholar

[10] G. Miyamoto, Z. -D. Li, H. Usuki and T. Furuhara: Mater. Sci. Forum Vol. 638-642 (2010), p.3400.

Google Scholar

[11] T. Akbay, R. C. Reed and C. Atkinson: Acta Metall. Mater. Vol. 42 (1994), p.1469.

Google Scholar

[12] C. Atkinson, T. Akbay and R. C. Reed: Acta Metall. Mater. Vol. 43 (1995), p. (2013).

Google Scholar

[13] R. Mancini and C. Budde: Acta Mater. Vol. 47 (1999), p.907.

Google Scholar

[14] M. Kumar, R. Sasikumar and P.K. Nair: Acta Mater. Vol. 46 (1998), p.6291.

Google Scholar

[15] C. García de Andrés, F.G. Caballero, C. Capdevila and H.K.D.H. Bhadeshia: Scr. Mater. Vol. 39 (1998), p.791.

Google Scholar

[16] P. R. Howell: Mater. Character. Vol. 40 (1998), p.227.

Google Scholar

[17] S. Tagashira, K. Sakai, T. Furuhara and T. Maki: ISIJ Inter. Vol. 40 (2000).

Google Scholar