Disordering and Ordering in a Severely Deformed FePd Alloy

Article Preview

Abstract:

A Fe50Pd50 alloy was severely deformed by High Pressure Torsion (HPT). For a processing temperature ranging from 20°C to 300°C, the Severe Plastic Deformation (SPD) induces a significant grain size reduction (in a range of 50 to 150 nm) but also a strong disordering of the long range ordered L10 phase. However, Transmission Electron Microscopy (TEM) data clearly show that few ordered nanocrystals remain in the deformed state. The deformed material was annealed to achieve a nanoscaled long range ordered structure. The transformation proceeds via the nucleation and growth of ordered domains along grain boundaries. Aging at lower temperature (400°C) gives rise to a smallest domain size and thus the highest coercivity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

703-708

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Zhang, M. Lelovic, W.A. Soffa, Scripta Metall. Mater. Vol. 25 (1991), p.1577.

Google Scholar

[2] A.R. Deshpande, H. Xu, J.M.K. Wiezorek, Acta Mater. Vol. 52 (2004), p.2903.

Google Scholar

[3] S.H. Whang, Q. Feng, Y. -Q. Gao, Acta Mater. Vol. 46 (1998), p.6485.

Google Scholar

[4] D. Weller, A. Moser, IEEE Trans. Magn. Vol. 35 (1999), p.4423.

Google Scholar

[5] C. Issro, M. Abes, W. Puschl, B. Sepiol, W. Pfeiler, P. Rogl, G. Schmerber, W. A. Soffa, R. Kozubski, V. Pierron-Bohnes, Met. Mat. Trans. Vol. 37A (2006), p.3415.

DOI: 10.1007/s11661-006-1035-5

Google Scholar

[6] A.R. Deshpande, J.M.K. Wiezorek, J. Magn. Magn. Mater. Vol. 270 (2004), p.157.

Google Scholar

[7] T. Klemmer, D. Hoydick, H. Okumura, B. Zhang, W.A. Soffa, Scipta Metall. Mater. Vol. 33 (1995), p.1793.

Google Scholar

[8] H. Okumura, T. Klemmer, W.A. Soffa, J.A. Barnard, IEEE Trans. Magn. Vol. 34 (1998), p.1015.

Google Scholar

[9] Ye. Yermakov, N.I. Sokolovskaya, N.I. Tsurin, G.V. Ivanova, L.M. Magat, Physics of Metals and Metallovedenie (Physics of Metals and Metallography) Vol. 46, (1978), p.733.

Google Scholar

[10] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[11] R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mat. Vol. 8 (2006), p.1046.

DOI: 10.1002/adem.200600133

Google Scholar

[12] P.W. Bridgman, Phys. Rev. Vol. 48 (1935), p.825.

Google Scholar

[13] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Mater. Sci. Eng. Vol. A137 (1991), p.35.

Google Scholar

[14] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev, A. Mukherjee, Nanostruct. Mater. Vol. 11 (1999), p.17.

DOI: 10.1016/s0965-9773(98)00157-3

Google Scholar

[15] A.V. Korznikov, G. Tram, O. Dimitrov, G.F. Korznikova, S.R. Idrisova, Z. Pakiela, Acta Mater. Vol. 49 (2001), p.663.

DOI: 10.1016/s1359-6454(00)00345-1

Google Scholar

[16] C. Rentenberger, H.P. Karnthaler, Acta Materialia Vol. 56 (2008), p.2526.

Google Scholar

[17] R.A. Buckley, Metal Science Vol. 9 (1975), p.243.

Google Scholar

[18] R.A. Buckley, Metal Science, February (1979), p.67.

Google Scholar