Martensitic Transformations Using a Two-Body Isotropic Potential: Strain-Stress Simulations and Superelasticity in Monocrystals

Article Preview

Abstract:

We use an isotropic interaction potential for a set of classical identical particles to model martensitic transformations and the processes that are usually associated with them. We performed 2D numerical simulations of a strain-stress experiment and show that superelastic effect is present in our model.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

73-78

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Bhattacharya: Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect. Oxford: Oxford University Press (2003).

Google Scholar

[2] K. Otsuka and M. Wayman (eds. ): Shape Memory Materials. Cambridge: Cambridge University Press (1998).

Google Scholar

[3] J. Bhattacharya, A. Paul, S. Sengupta and M. Rao: J. Phys. Condens. Matter Vol. 20, 365210 (2008).

Google Scholar

[4] E.A. Jagla, Phys. Rev. E Vol. 58 1478 (1998); M.C. Rechtsman, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. Vol. 95, 228391 (2005).

Google Scholar

[5] M.F. Laguna and E.A. Jagla, J. Stat. Mech. P09002 (2009).

Google Scholar

[6] K. Bhattacharya, S. Conti, G. Zanzotto and J. Zimmer: Nature Vol. 428, 55 (2004).

Google Scholar

[7] M.F. Laguna and E.A. Jagla, ESOMAT 2009, 02021 (2009).

Google Scholar

[8] J.M. Haile; Molecular Dynamics Simulation: Elementary Methods, Wiley, New York, USA (1992).

Google Scholar

[9] M.P. Allen, D. J. Tildesley; Computer simulation of liquids, Oxford University Press, Oxford, England (1987).

Google Scholar

[10] J.L. Pelegrina, M. Ahlers; Acta Metall. Mater. Vol. 38, 293 (1990).

Google Scholar