Predicting Surface White Layer in Precision Hard Turning

Article Preview

Abstract:

With the advantage of neural network in dealing with non-linear problem, this paper has established a BP artificial neural network model of non-linear mapping for tool parameters, cutting parameters and white layer depth value in precision hard turning. Results indicate that the model is of high accuracy and of extensive ability to deal with problem, and can accurately predict surface whiter layer in precision hard turning. This research will provide essential help for selection of cutting parameter and tool parameter.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 175)

Pages:

274-277

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. K. Toenshoff, C. Arendt, A. R. Ben. Annals of the CIRP, Vol. 49 (2000), p.1.

Google Scholar

[2] F. Klocke, E. Brinksmeier, K. Weinert. Annals of the CIRP, Vol. 54 (2005), p.552.

Google Scholar

[3] X.P. Zhang; G. W Zhao, H. Jiang; C.R. Richard Journal of Shanghai Jiaotong University, Vol. 40 (2006), p.922.

Google Scholar

[4] G. Poulachon, A. Albert et al. Machine Tools and Manufacture, Vol. 45 (2005), p.211.

Google Scholar

[5] A. Ramesh, S.N. Melkote, L.F. Allard, et al: Materials Science and Engineering A, Vol. 390 (2005), p.88.

Google Scholar

[6] S. J. Dai, T Xing, D.H. Wen. China mechanical engineering, Vol. 17(2006), p.1007.

Google Scholar

[7] T. Ŏzel, Y. Karpat. Machine Tools and Manufacture, Vol. 42 (2005), p.467.

Google Scholar

[8] S.B. Fan, T.Y. Wang, W.J. Wang, H.L. He: Machine Tool and Hydraulics, Vol. 30 (2006), p.4.

Google Scholar