Microstructure and Properties of Sand Casting Magnesium Alloys for Elevated Temperature Applications

Article Preview

Abstract:

It is required of sand casting magnesium used for aircraft industry to be, among others, increasingly creep-resisting. This paper describes microstructure and properties of chosen magnesium sand casting alloys, intended for usage at ambient and elevated temperature. The first part describes the most popular magnesium alloy Mg-9Al-1Zn (AZ91), which, due to the presence of Mg17Al12 phase in its structure, can be used only up to the temperature of ~120°C. The second part describes Mg-5Y-4RE-Zr (WE54) alloy, which can be used at the temperature of up to ~250°C. Unfortunately, its usage is very limited due to high price. The third part characterizes Mg-3Nd-1Gd-Zr (EV31A) alloy, which has properties similar to Mg-5Y-4RE-Zr alloy, but lower price. This paper also discusses the potential applications of these alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 176)

Pages:

63-74

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Friedrich, B. Mordike: Magnesium Technology (Springer-Verlag Berlin Heidelberg 2006).

Google Scholar

[2] M. Avedesian, H. Baker: Magnesium and Magnesium Alloys (ASM Handbook 1999).

Google Scholar

[3] A. A. Luo: Mat. Scie. For. 419-422 (2003), p.57.

Google Scholar

[4] B.L. Mordike, T. Ebert: Mat. Sci. and Eng. A302 (2001), p.37.

Google Scholar

[5] B.L. Mordike: Mat. Sci. and Eng. A324 (2002), p.103.

Google Scholar

[6] G. Pettersen, H. Westengen, R. Høier, O. Lohne: Mat. Sci. and Eng. A207 (1996), p.115.

Google Scholar

[7] P. Bakke, K. Pettersen, H. Westengen: Magnesium Technology (2003), p.171.

Google Scholar

[8] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D. StJohn: J. of Light Met. 1 (2001), p.61.

Google Scholar

[9] C.J. Bettles, C.T. Forwood., D.H. StJohn, M.T. Frost, D.S. Jones, M. Qian, G.L. Song: Magnesium Technology (2003), p.223.

Google Scholar

[10] O.B. Fabrichnaya, H.L. Lukas, G. Effenberg, F. Aldinger: Intermet. 11 (2003), p.1183.

Google Scholar

[11] L. L. Rokhlin, T. V. Dobatkina, I. E. Tarytina, V. N. Timofeev, E. E. Balakhchi: J. of All. and Com. 367 (2004), p.17.

Google Scholar

[12] S. Gorsse, C.R. Hutchinson, B. Chevalier, J.F. Nie: J. of All. and Com. 392 (2005), p.253.

Google Scholar

[13] J.F. Nie, X.L. Xiao, C.P. Luo, B.C. Muddle: Micron 32 (2001), p.857.

Google Scholar

[14] J.F. Nie, B.C. Muddle: Scr. Mat. 40, No 10 (1999), p.1089.

Google Scholar

[15] G. Lorimer, R. Azari-Khosroshaki, M. Ahmed, In: Proceedings of the International Conference on Solid-Solid Phase Transformations. The Japan Institute of Metals (1999), p.185.

Google Scholar

[16] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch: Acta Mat. 51 (2003), p.5335.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[17] P. Lyon, T. Wilks, I. Syed: Magnesium Technology (2005), p.303.

Google Scholar

[18] P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer: Scr. Mat. 48 (2003), p.1023.

Google Scholar

[19] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding: J. of All. and Comp. 421 (2006), p.309.

Google Scholar