[1]
W. Rączka, M. Sibielak, J. Konieczny: Smart vibration isolation systems with shape memory alloy, proceedings of 7th International Carpathian Control Conference (Czech Republic, 2006).
Google Scholar
[2]
M. Sibielak: Identification of hysteresis operator for a controllable damper with piezoelectric actuator, proceedings 7th Conference on Active noise and vibration control methods : Wigry, Poland, (2005).
Google Scholar
[3]
W. Rączka: Mechanics and Control, AGH University of Science and Technology Krakow, Vol. 22 (2003), p.389–394.
Google Scholar
[4]
W. Rączka: Hydraulika a Pneumatika Vol. 7 (2005), p.40–42.
Google Scholar
[5]
W. Rączka: Testing of a spring with controllable stiffness, Mechanics, AGH University of Science and Technology. Commission on Applied Mechanics of Polish Academy of Sciences. Cracow vol. 25 (2006), p.79–86.
Google Scholar
[6]
C.M. Harris: Shock and Vibration Handbook (McGraw-Hill, New York, 1987).
Google Scholar
[7]
C.H. Hansen, S. Snyder: Active Control of Noise and Vibration (Spon Press, London, 1997).
Google Scholar
[8]
J. Kowal, J. Pluta, J. Konieczny, A. Kot: Energy recovering in active vibration isolation system – results of experimental research, J. of Vibration and Control Vol. 14 no. 7 (2008) p.1075–1088.
DOI: 10.1177/1077546308088980
Google Scholar
[9]
J. Konieczny, J. Kowal: Full active vehicle suspension – experimental data, Proceedings, ACTIVE, Canada (2009).
Google Scholar
[10]
L.R. Miller: Tuning passive, semi-active, and fully active suspension systems, Proceeding of the 27th Conference on Decision and Control, Austin, TX, (1988).
DOI: 10.1109/cdc.1988.194694
Google Scholar
[11]
D.C. Karnopp, M.J. Crosby, R.A. Harwood: J. of Eng. for Industry Vol. 96 (1974), p.619–626.
Google Scholar
[12]
D.C. Karnopp: J. of Dynamic Systems, Measur., and Control Vol. 112 (1990), p.448–455.
Google Scholar
[13]
X. Wu, M.J. Griffin: J. of Sound and Vibration Vol. 203 (5) (1997), p.781–793.
Google Scholar
[14]
Y. Liu, T.P. Waters, M.J. Brennan: J. of Sound and Vibration Vol. 280 (2005), p.21–39.
Google Scholar
[15]
Z. Gosiewski, A. Mystkowski: Mech. Systems and Signal Processing Vol. 22, (2008) pp.1297-1303.
Google Scholar
[16]
S. Hurlebaus, L. Gaul: Mech. Systems and Signal Processing Vol. 20 (2006), p.255–281.
Google Scholar
[17]
J. Konieczny, W. Rączka, M. Sibielak: Experimental investigation of the semi-active vibration isolation system, proceedings 9th Conference on Active noise and vibration control methods, Poland, (2009).
Google Scholar
[18]
M. Zapateiro, N. Luo, H. R. Harimi: Solid State Phen. Vols. 147-149 (2009), pp.839-844.
Google Scholar
[19]
B. Sapiński: Solid State Phenomena Vols. 147-149 (2009), pp.819-824.
Google Scholar
[20]
E.J. Krasnicki: Shock and Vibration Bulletin Vol. 50 (1980), p.69–76.
Google Scholar
[21]
J. Alanoly, S. Sankar: J. of Sound and Vibration Vol. 126 (1) (1988), p.145–156.
Google Scholar
[22]
J. Alanoly, S. Sankar: J. of Mechanisms, Transmissions and Automation in Design Vol. 109 (1987), p.242–247.
DOI: 10.1115/1.3267444
Google Scholar
[23]
J.S. Lane, A.A. Ferri, B.S. Heck: Design Engineering Division Vol. 49, (1992), p.165.
Google Scholar
[24]
T. Pinkaew, Y. Fujino: Engineering Structures Vol. 23 (2001), p.850–856.
Google Scholar
[25]
S. E. Lyshevski: Optimal control of nonlinear continuous-time systems: design of bounded controllers via generalized nonquadratic functional, Proceedings of American control conference, (1998) (p.205–209).
DOI: 10.1109/acc.1998.694659
Google Scholar
[26]
R. Beard, G. Saridis, J. Wen: Automatica Vol. 33(12), (1997), p.2159–2177.
Google Scholar
[27]
R. Beard, G. Saridis, J. Wen: J. of Optimi. Theory and Appl. Vol. 96(3), (1998), p.589.
Google Scholar
[28]
E. Guglielmino, T. Sireteanu, C.W. Stammers, G. Ghita, M. Giuclea: Semi-active Suspension Control, Springer (2008).
DOI: 10.3397/1.3110986
Google Scholar
[29]
S. M. Savaresi, Ch. Poussot-Vassal, C. Spelta, O. Sename, L. Dugart: Semi-active suspension control design for vehicles (Elsevier, NY 2010 ).
DOI: 10.1016/b978-0-08-096678-6.00006-7
Google Scholar
[30]
En RongWang, Xiao Qing Ma, S Rakhela and C Y Su: Modelling the hysteretic characteristics of a magnetorheological fluid damper, Proc. Instn Mech. Engrs Vol. 217.
Google Scholar
[31]
M. Sibielak: Optimal control smart systems, proceedings 8th Conference on Active noise and vibration control methods, Poland, (2007).
Google Scholar
[32]
G. Yang, B.F. Spencer Jr, J. D. Carlson, M. K. Sain: Eng. Struct., Vol. 24, (2002), pp.309-323.
Google Scholar
[33]
J. Konieczny: Modelling of the electrohydraulic full active vehicle suspension, Engineering Transactions, (2008) Vol. 56, iss. 3 pp.247-268.
Google Scholar
[34]
J. Konieczny, J. Kowal: A pole placement controller for active vehicle suspension, Archives of Control Sciences, (2005) Vol. 15, iss. 1 pp.97-116.
Google Scholar
[35]
K. Jaracz, J. Pluta, M. Sibielak: Testing the Electrohydraulic Servo Driver Sensitivity to Supply Pressure Changes. Proceedings of 5rd International Carpathian Control Conference Zakopane, Poland, May 25-28, (2004) pp.433-438.
Google Scholar
[36]
J. Pluta, W. Rączka, M. Sibielak: Optimision of Parameters of an Electrohydraulic Serwomechanism Controller. Proceedings of 4rd International Carpathian Control Conference Slovak Republic. May 26-29, (2003) pp.556-561.
Google Scholar
[37]
J. Kwaśniewski, A. Piotrowska, W. Rączka, M. Sibielak: The mathematical model of a hydrostatic transmission for controller design. Proceedings Conference of the Modelling and Simulation. Palm Spring, California, USA (2003) pp.275-280.
Google Scholar
[38]
Sk. Faruke Ali, A. Ramaswamy: J. Dynamic Systems, Measur. And Control Vol. 131 (2009).
Google Scholar