Simple Identification of Fractional Differential Equation

Article Preview

Abstract:

In this paper the simple identification problem for fractional differential equation of Caputo type was considered. This is the problem of estimation parameters, for which the quadratic criterion is minimized. For solving this issue, the Non Linear Programing technique, based on Marquardt algorithm, was used. At the end of article the results for numerical experiments was presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 180)

Pages:

331-338

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mitkowski W. Approximation of Fractional Diffusion-Wave Equation. Acta Mechanica et Automatica, vol.5 no.2, 2011, in print.

Google Scholar

[2] Weilbeer M. Efficient Numerical Methods for Fractional Differential Equations and their Analytical, Technischen Universität Braunschweig, Doctors Dissertation, 1-224, 2005.

Google Scholar

[3] Kaczorek T. Positive fractional linear systems, Pomiary Automatyka Robotyka, No. 2, 91-112, 2011.

Google Scholar

[4] Busłowicz M. Wybrane zagadnienia z zakresu liniowych, ciągłych układów niecałkowitego rzędu, Pomiary Automatyka Robotyka, no.2, 93-114, 2010.

DOI: 10.14313/par_206/94

Google Scholar

[5] Murillo J. Q., Yuste S.B . An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form, Journal of Computational and Nonlinear Dynamics, vol.6, 2011.

DOI: 10.1115/1.4002687

Google Scholar

[6] Lubich C. discretized fractional calculus, SIAM J. Math. Anal., vol.17, no.3, 704-719, 1986.

DOI: 10.1137/0517050

Google Scholar

[7] Podlubny I . Matrix approach to discrete fractional calculus, Fract, Calc. Appl. Anal., vol.3, no. 4, 359-386, 2000.

Google Scholar

[8] Murillo J. Q., Yuste S.B On three explicit difference schemes for fractional diffusion and diffusion-wave equations, Phisica Scripta, vol.163, 2009.

DOI: 10.1088/0031-8949/2009/t136/014025

Google Scholar

[9] Poinot T., Trigeassou J.C. Identification of Fractional Systems Using an Output-Error Tehnique, nonlinear Dynamics, vol.38,133-154, 2004.

DOI: 10.1007/s11071-004-3751-y

Google Scholar

[10] Dorcak L., Lesko V., Kostial I. Identification of fractional order dynamical systems, in Proceedings of the 12th International Conference on Process Control and Simulation, Kosice, Slovak Republic, 62-68, 1996.

Google Scholar

[11] Poinot T., Trigeassou J.C., Lin J. Parameters estimation of fractional models: Application to the modeling of diffusive systems, 15th Triennial World Congress, Barcelona, Spain, vol.15 no.1, 2002.

Google Scholar

[12] Marquardt D. W. An algorithm for Least-Squares estimation of Non-Linear Parameters, J. Soc. Industr. Appl. Math., vol.11 no.2, 431-441, 1963.

Google Scholar