[1]
Mitkowski W. Approximation of Fractional Diffusion-Wave Equation. Acta Mechanica et Automatica, vol.5 no.2, 2011, in print.
Google Scholar
[2]
Weilbeer M. Efficient Numerical Methods for Fractional Differential Equations and their Analytical, Technischen Universität Braunschweig, Doctors Dissertation, 1-224, 2005.
Google Scholar
[3]
Kaczorek T. Positive fractional linear systems, Pomiary Automatyka Robotyka, No. 2, 91-112, 2011.
Google Scholar
[4]
Busłowicz M. Wybrane zagadnienia z zakresu liniowych, ciągłych układów niecałkowitego rzędu, Pomiary Automatyka Robotyka, no.2, 93-114, 2010.
DOI: 10.14313/par_206/94
Google Scholar
[5]
Murillo J. Q., Yuste S.B . An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form, Journal of Computational and Nonlinear Dynamics, vol.6, 2011.
DOI: 10.1115/1.4002687
Google Scholar
[6]
Lubich C. discretized fractional calculus, SIAM J. Math. Anal., vol.17, no.3, 704-719, 1986.
DOI: 10.1137/0517050
Google Scholar
[7]
Podlubny I . Matrix approach to discrete fractional calculus, Fract, Calc. Appl. Anal., vol.3, no. 4, 359-386, 2000.
Google Scholar
[8]
Murillo J. Q., Yuste S.B On three explicit difference schemes for fractional diffusion and diffusion-wave equations, Phisica Scripta, vol.163, 2009.
DOI: 10.1088/0031-8949/2009/t136/014025
Google Scholar
[9]
Poinot T., Trigeassou J.C. Identification of Fractional Systems Using an Output-Error Tehnique, nonlinear Dynamics, vol.38,133-154, 2004.
DOI: 10.1007/s11071-004-3751-y
Google Scholar
[10]
Dorcak L., Lesko V., Kostial I. Identification of fractional order dynamical systems, in Proceedings of the 12th International Conference on Process Control and Simulation, Kosice, Slovak Republic, 62-68, 1996.
Google Scholar
[11]
Poinot T., Trigeassou J.C., Lin J. Parameters estimation of fractional models: Application to the modeling of diffusive systems, 15th Triennial World Congress, Barcelona, Spain, vol.15 no.1, 2002.
Google Scholar
[12]
Marquardt D. W. An algorithm for Least-Squares estimation of Non-Linear Parameters, J. Soc. Industr. Appl. Math., vol.11 no.2, 431-441, 1963.
Google Scholar