Extension of the Optical Absorption of TiO2 Nanopaticles to Visible Light Region by Doping with Cobalt

Article Preview

Abstract:

TiO2 nanoparticles doped with different cobalt concentrations were fabricated by using so-gel method. The crystal structures and the morphology of the samples were characterized by using x-ray diffractmetry (XRD) and transmission electron microscopy (TEM), respectively. It was found that all the samples are anatase phase and the nanoparticles are of the size around 10 nm. Investigations of the binding energies of different element with X-ray photoelectron spectrometry (XPS) revealed that Co ions are in Co2+ state and take the substitutional sites. No Co clusters were detected in the samples. The optical absorption properties of the samples were studied by using UV-vis absorption spectroscopy. It was noticed that cobalt doped TiO2 has a significant visible light absorption in contrast to pure TiO2: besides a noticeable red shift in absorption edge, an extra visible light absorption peak appears at a wavelength around 600 nm. The visible absorption in cobalt doped TiO2 may attribute to the electron transition from impurity levels induced by the substitutional Co ions and the oxygen vacancies to the conduct band.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 181-182)

Pages:

348-351

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nature Vol. 283 (1972), p.37.

Google Scholar

[2] S. Klosek and D. Raftery: J. Phys. Chem. B Vol. 105 (2001), p.2815.

Google Scholar

[3] H. Kato and A. Kudo: J. Phys. Chem. B Vol. 106 (2002), p.5029.

Google Scholar

[4] K. T. Ranjit and B. Viswanathan: J. Photochem. Photobiol. A Vol. 108 (1997), p.79.

Google Scholar

[5] X. Yang, C. Cao, K. Hohn et al.: J. Catal Vol 252 (2007), p.296.

Google Scholar

[6] T. Ohno, M. Akiyoshi, T. Umebayashi et al.: Appl. Catal. A, Vol 265, (2004), p.115.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Sci. Vol 293 (2001), p.269.

Google Scholar