Effects of the Heat Treatment on the Mechanical Properties of a Novel Thermotropic Liquid-Crystalline Polymer Fiber

Article Preview

Abstract:

Thermotropic liquid-crystalline polymers (TLCPs) have aroused wide public concern which is attributed to their high strength, stiffness, chemical resistance and perfect dimensional stability as high-performance engineering materials. Vectran heat treated after melt spinning is a representative commercial aromatic copolyester fiber. In this study, a novel TLCP melt-polymerized with 4,4’-diphenyloxide dicarboxylic acid (DODA), 4-acetoxybenzoic acid (ABA), hydroquinone diactate (HQA), 2,6-naphthalene dicarboxylic (NDA) and terephthalic acid (TA) were melt spun into fibers and heat treated to enhance the breaking strength and Young’s modulus. Intermolecular mechanical elements slipped between 120-130 °C and crystallization or the conformational rotations occurred along the extended polymer chain. For this new TLCP fiber, the optimal heat treatment temperature was 260 °C and the suitable heat-treatment time was over 48 hours. The breaking strength, Young’s modulus and breaking elongation of the as-spun fiber were improved from 1.58GPa, 45.21GPa and 1.97% to 3.20GPa, 133.44GPa and 2.42% respectively after heat treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 181-182)

Pages:

63-66

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Economy and K. Goranov: Adv. Polym. Sci. Vol. 117 (1994), p.221.

Google Scholar

[2] D. Dutta, H. Fruitwala, A. Kohli and R. A. Weiss: Polym. Eng. Sci . Vol. 30 (1990), p.1005.

Google Scholar

[3] J. E. Taylor, A. Romo-Uribe and M. R. Libera: Polym. Advan. Technol. Vol. 14 (2003), p.595.

Google Scholar

[4] J. Y. Kim and S. H. Kim: J. Polym. Sci. B Polym. Phys. Vol. 43 (2005), p.3600.

Google Scholar

[5] F. L. La Mantia, A. Valenza and P. L. Magagnini. J. Appl. Polym. Sci. Vol. 44 (1992), p.1257.

Google Scholar

[6] S. Saikrasum and T. Amornsakchai: J. Appl. Polym. Sci. Vol. 107 (2008), p.2375.

Google Scholar

[7] S. Y. Kim, S. H. Kim, S. H. Lee and J. R. Youn: Compos Part A-Appl S. Vol. 40 (2009), p.607.

Google Scholar

[8] S. Y. Kim, J. Y. Kim and S. H. Kim: Polym. Int. Vol. 57 (2008), p.378.

Google Scholar

[9] E. Kalfon-Cohen, A. Pegoretti and G. Marom: Polymer. Vol. 51 (2010), p.1033.

Google Scholar

[10] A. Kaito, M. Kyotani and K. Nakayama: J. Appl. Polym. Sci. Vol. 55 (1995), p.1489.

Google Scholar

[11] C. K. Saw, G. Collins J. Menczel and M. Jaffe: J. Therm. Anal. Calorim. Vol. 93 (2008), p.175.

Google Scholar

[12] J. D. Menczel , G. L. Collins and S. K. Saw: J. Therm. Anal. Calorim. Vol. 49 (1997), p.201.

Google Scholar

[13] C. K. Saw, G. Collins, J. Menczel and M. Jaffe: J. Therm. Anal. Calorim. Vol. 93 (2008), p.175.

Google Scholar