[1]
R.C. Stoneman, L. Esterowitz, Intracavity-pumped 2. 09-µm Ho: YAG laser, Opt. Mater. 17 (1992) 736-738.
DOI: 10.1364/ol.17.000736
Google Scholar
[2]
A. Godard, Infrared (2-12µm) solid-state laser sources: a review, C.R. Physique. 8 (2007) 1100-1128.
Google Scholar
[3]
D.Y. Shen, A. Abdolvand, L.J. Cooper, Efficient Ho: YAG laser pumped by a cladding- pumped tunable Tm: silica-fiber laser, Appl. Phys. B. 79 (2004) 559-561.
DOI: 10.1007/s00340-004-1562-y
Google Scholar
[4]
M. Malinowski, Z. Frukacz, M. Szuflinska, Optical transitions of Ho3+ in YAG, J. Alloys Compd. 300-301 (2000) 389-394.
DOI: 10.1016/s0925-8388(99)00770-7
Google Scholar
[5]
E. Lippert, S. Nicolas, G. Arisholm, Midinfrared laser source with high power and beam quality, Appl. Opt. 45 (2006) 3839-3845.
DOI: 10.1364/ao.45.003839
Google Scholar
[6]
A. Ikesue, Y.L. Aung, Ceramic Laser Materials, Nat. Photonics. 2 (2008) 721-727.
Google Scholar
[7]
V. Lupei, A. Lupei, A. Ikesue, Transparent polycrystalline ceramic laser materials, Opt. Mater. 30 (2008) 1781-1786.
DOI: 10.1016/j.optmat.2008.03.003
Google Scholar
[8]
H. Yagi, T. Yanagitani, T. Numazawa, The physical properties of transparent YAG elastic modulus at high temperature and thermal conductivity at low temperature, Ceram. Int. 33 (2007) 711-714.
DOI: 10.1016/j.ceramint.2005.12.007
Google Scholar
[9]
J. Zhang, S.W. Wang, T.J. Rong, Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders, J. Am. Cera. Soc. 87 (2004) 1072-1075.
DOI: 10.1111/j.1551-2916.2004.01072.x
Google Scholar
[10]
S.H. Lee, S. Kochawattana, G.L. Messing, Solid-state reactive sintering of transparent polycrystalline Nd: YAG ceramics, J. Am. Ceram. Soc. 89 (2006) 1945-(1950).
DOI: 10.1111/j.1551-2916.2006.01051.x
Google Scholar
[11]
A. Ikesue, K. Yoshida, Scattering in polycrystalline Nd: YAG lasers, J. Am. Ceram. Soc. 81 (1998) 2194-2196.
Google Scholar