Magnetic Field and Annealing Influence on the Martensitic Transition in Ni45.8Mn42.6In11.6 Shape Memory Alloy Ribbons

Article Preview

Abstract:

We report the effect of shorttime vacuum annealing, during 10 minutes at 923 K, 973 K, 1023 K and 1073 K, on magnetostructural properties of as-quenched ribbons of Ni45.5Mn43In11.5 Heusler alloy. The martensitic transformation is strongly sensitive to annealing treatments. The martensitic phase starting temperature is significantly shifted from 239 K towards higher temperatures around 370 K. It suffers a break down in two peaks when a field equal or higher than 500 Oe is applied to the as-quenched sample. This effect is not detected in the transformation of annealed ribbons but its signature can be observed at low temperature. Moreover, under high magnetic field up to 30 kOe temperatures associated with both martensitic and reverse transitions do not change for annealed samples, meanwhile the magnetization difference between austenite and martensite increases with the field. Nevertheless, it almost remains unchanged in the as-quenched ribbon.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

307-310

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Mañosa, X. Moya, A. Planes, T. Krenke, M. Acet, E.F. Wassermann, Materials Science and Engineering A 481–482 (2008) 49–56.

DOI: 10.1016/j.msea.2007.01.178

Google Scholar

[2] V. K. Sharma, M. K. Chattopadhyay, L. S. Sharath Chandra, S. B. Roy, J. Phys. D: Appl. Phys. 44 (2011) 145002.

Google Scholar

[3] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett., 85 (2004) 4358.

DOI: 10.1063/1.1808879

Google Scholar

[4] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature, 439 (2006) 957.

DOI: 10.1038/nature04493

Google Scholar

[5] B. M. Wang, L. Wang, Y. Liu, B. C. Zhao, J. Appl. Phys. 105, (2009) 023913.

Google Scholar

[6] K. R. Priolkar, D. N. Lobo, P. A. Bhobe, S. Emura, A. K. Nigam, EPL, 94 (2011) 38006.

DOI: 10.1209/0295-5075/94/38006

Google Scholar

[7] V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovsky, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, S. K. Nayak, Phys. Rev. B78 (2008) 184427.

Google Scholar

[8] E. Şaşioğlu, L. M. Sandratskii, P. Bruno, Phys. Rev. B, 70 (2004) 024427.

Google Scholar

[9] W. Cai, Y. Feng, J.H. Sui, Z.Y. Gao, G.F. Dong, Scripta Materialia, 58 (2008) 830–833.

Google Scholar