Magnetocaloric Effect in Ho-Er-Gd-Co Multicomponent Compounds

Article Preview

Abstract:

We report magnetic and magnetocaloric properties of polycrystalline series of the (Ho0.9Er0.1)1-xGdxCo2 (x = 0.05, 0.1 and 0.15) solid solutions. These samples were synthesized using high purity rare earth metals and cobalt. X-ray diffraction patterns taken at room temperature reveal that all compounds have the C15 cubic Laves phase structure. Magnetization measurements were carried out using a vibration sample magnetometer with a step motor in fields up to 14 T using a Bitter-type magnet. Heat capacity measurements have been performed in the temperature range of 2-300 K without magnetic field and in a magnetic field of 1 and 2 T. The magnetocaloric effect has been estimated in terms of isothermal magnetic entropy change for all solid solutions in magnetic fields up to 3 T. The effect of increasing Gd amount in (Ho0.9Er0.1)1-xGdxCo2 on the magnetic and magnetocaloric properties will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

303-306

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.K. Singh, K.G. Suresh, A.K. Nigam, S.K. Malik, A.A. Coelho, S. Gama, J. Magn. Magn. Mater. 317 (2007) 68.

Google Scholar

[2] P.J. von Ranke, D.F. Grangeia, A. Caldas, N.A. de Oliveira, J. Appl. Phys. 93 (2003) 4055.

Google Scholar

[3] M. Foldeaki, A. Giguere, R. Chahine, T.K. Bose, Adv. Cryogenic Eng. 43 (1998) 1533.

Google Scholar

[4] N.H. Duc, D.T. Kim Anh, J. Magn. Magn. Mater. 873-875 (2002) 242.

Google Scholar

[5] D.H. Wang, S.L. Tang, H.D. Liu, W.L. Gao, Y.W. Du, Intermetallics, 10 (2002) 819.

Google Scholar

[6] J. Voiron, A. Berton and J. Chaussy, Phys. Lett. 50A (1974) 17.

Google Scholar

[7] D. Gignoux, F. Givord and W.C. Koehler, Physica 86-88B(1977) 165.

Google Scholar

[8] D. Bloch, D.M. Edwards, M. Shimizu and J. Voiron, J. Phys. F5 (1975) 1217.

Google Scholar

[9] A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications, IOP Publishing (2003).

Google Scholar

[10] H.R. Kirchmayr, E. Burzo, in: H.P.J. Wijn (Ed. ), Landolt Börnstein, New Series III/19d2, Berlin (1990).

Google Scholar

[11] A. Giguere, M. Foldeaki, W. Schnelle, E. Gmelin; J. Phys. Condens. Mater. 11 (1999) 6969.

Google Scholar

[12] J. Ćwik, T. Palewski, K. Nenkov, G.S. Burkhanov, O.D. Chistyakov, J. Klamut, J. Warchulska, J. Alloys Compd. 460, 41 (2008).

DOI: 10.1016/j.jallcom.2007.06.006

Google Scholar

[13] H. Oesterreicher, J. Stanley, R. Pitts, Phys. Stat. Sol. (a) 12 (1972) K65.

Google Scholar

[14] E. Baranov, E. Gratz, H. Nowotny, W. Steiner, . Magn. Magn. Mater. 37 (1983) 206.

Google Scholar

[15] M. Bouvier, P. Lethuillier, D. Schmitt; Phys. Rev. B 43, (1991) 13137.

Google Scholar

[16] V.K. Pecharsky, K.A. Gschneidner Jr., J. Appl. Phys. 86 (1999) 565.

Google Scholar