Electron Transport in Partially Filled Iron Carbon Nanotubes

Article Preview

Abstract:

We report electron transport properties of iron filled multiwalled carbon nanotubes (MWCNT) with outer diameters of 30 to 80 nm and lengths of 1 to 10 μm. Our study is combined with a structural investigation of the iron core using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). It was found that high current densities of 1.8x107 A/cm2 increase the conductivity of the MWCNT by a factor of two at 300 K, while the Fe core disappears probably forming defect states in the carbon shells. The enhanced diffusion of iron is most probably the result of local heating of the iron followed by implantation of iron atoms in the nanotube layers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

498-501

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C.M. Schneider, Synthesis and properties of filled carbon nanotubes, Diamond Relat. Mater. 12 (2003) 790-793.

DOI: 10.1016/s0925-9635(02)00325-4

Google Scholar

[2] R.F. Egerton, Electron Energy-loss spectroscopy in the Electron Microscopy, second ed., Plenum Press, New York, (1996).

Google Scholar

[3] F. Wang, M. Malac, and R.F. Egerton, Energy-loss near-edge fine structure of iron nanoparticles, Micron, 37 (2006) 316-323.

DOI: 10.1016/j.micron.2005.12.003

Google Scholar

[4] C. Colliex, T. Manoubi, C. Ortiz, Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system, Phys. Rev. B 44 (1991) 11402-11411.

DOI: 10.1103/physrevb.44.11402

Google Scholar

[5] S. Muto, T. Kimura, T. Tanabe, T. Kiyobayashi, T. Maruyama, Transmission electron microscopy and electron energy-loss spectroscopy analysis of hydrogenated nanostructured graphite prepared by mechanical milling, Jpn. J. Appl. Phys. 44 (2005).

DOI: 10.1143/jjap.44.2061

Google Scholar

[6] Information on http: /www. nanofactory. com.

Google Scholar

[7] K. Mølhave, S.B. Gudnason, A.T. Pedersen C.H. Clausen, A. Horsewell, P. Bøggild, Transmission electron microscopy study of individual carbon nanotube breakdown caused by Joule heating in air, Nano Lett. 6 (2006) 1663-1668.

DOI: 10.1021/nl060821n

Google Scholar

[8] F. Zhou, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Linear conductance of multiwalled carbon nanotubes at high temperatures, Solid State Commun. 129 (2004) 407-410.

DOI: 10.1016/j.ssc.2003.09.040

Google Scholar

[9] T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method, Appl. Phys. Lett. 87 (2005) 013108.

DOI: 10.1063/1.1957118

Google Scholar

[10] T.D. Yuzvinsky, W. Mickelson, S Aloni, S.L. Konsek, A.M. Fennimore, G.E. Begtrup, A. Kis, B.C. Regan, A. Zettl, Imaging the life story of nanotube devices, Appl. Phy. Lett. 87 (2005) 083103.

DOI: 10.1063/1.2012529

Google Scholar

[11] M. Hupalo, S Binz, M.C. Tringides, Strong metal adatom-substrate interaction of Gd and Fe with graphene, J. Phys.: Condens. Matter, 23 (2011) 045005.

DOI: 10.1088/0953-8984/23/4/045005

Google Scholar