Magneto-Optic Fraunhofer Diffraction on 2D Magnetic Domain Patterns

Article Preview

Abstract:

Magneto-optical Fraunhofer diffraction on phase 2D domain patterns with Cmm6 and Pab2 symmetry in uniaxial iron garnet films was studied. Domain patterns contain more than 100 elementary cells and have high spatial homogeneity. The diffraction patterns contain up to 10 or more orders of peaks. Possibilities of space-time modulation of optical radiation and multiplication of the modulation frequency both under change of diffraction order as well as amplitude of magnetic bias field strength were shown.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

737-741

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Zvezdin, V.A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials, IOP publishing, (1997).

Google Scholar

[2] D.I. Sementsov, R.M. Grechishkin, Light diffraction by stripe domain structures in magnetic crystals, Phys. Stat. Sol. (a) 110 (1988) 259–267.

DOI: 10.1002/pssa.2211100127

Google Scholar

[3] Y. Suzuki, C. Chappert, P. Bruno, P. Veillet, Simple model for the magneto-optical Kerr diffraction of a regular array of magnetic dots, J. Magn. Magn. Mater. 165 (1997) 516-519.

DOI: 10.1016/s0304-8853(96)00605-1

Google Scholar

[4] J.F. Dillon Jr., J.P. Remeika, Diffraction of Light by Domain Structure in Ferromagnetic CrBr3, J. Appl. Phys. 34 (1963) 637-640.

Google Scholar

[5] I.F. Gismyatov, D.I. Sementsov, Diffraction of light from a stripe domain structure with tilted domain walls, Physics of the Solid State 42 (2000) 1075-1080.

DOI: 10.1134/1.1131351

Google Scholar

[6] G.R. Woolhouse, P. Chaudhari, Fraunhofer Diffraction from Magnetic Domain in Garnet Film, Phys. Stat. Sol. (a) 19 (1973) K3.

DOI: 10.1002/pssa.2210190142

Google Scholar

[7] G.V. Arzamastseva, F.V. Lisovskii, E.G. Mansvetova, Light diffraction by biperiodic stripe domain structures, J. Commun. Technol. and Electronics 51 (2006) 1064-1077.

DOI: 10.1134/s1064226906090075

Google Scholar

[8] M. Seul, R. Wolfe, Evolution of disorder in magnetic stripe domains. I. Transverse instabilities and disclination unbinding in lamellar patterns, Phys. Rev. A 46 (1992) 7519–7533.

DOI: 10.1103/physreva.46.7519

Google Scholar

[9] K.R. Papworth, The diffraction of light by cylindrical magnetic domain arrays in thin rare-earth garnet films, Phys. Stat. Sol. (a) 22 (1974) 373–380.

DOI: 10.1002/pssa.2210220202

Google Scholar

[10] B. Kuhlow, Lichtbeugung an magnetischen Bubble-Bereichsgittern in substituiertem Yttrium-Eisengranat, Phys. Stat. Sol. (a) 54 (1979) 281-289.

DOI: 10.1002/pssa.2210540135

Google Scholar

[11] F.V. Lisovskiĭ, E.G. Mansvetova, E.P. Nikolaeva, A.V. Nikolaev, Dynamic self-organization and symmetry of the magnetic-moment distribution in the films, JETP 76 (1993) 116-127.

Google Scholar

[12] M.V. Logunov, M.V. Gerasimov, Formation of Two-Dimensional Lattices of Magnetic Domains in a Harmonic Magnetic Field, JETP Lett. 74 (2001) 491-494.

DOI: 10.1134/1.1446542

Google Scholar

[13] E. Asciutto, C. Roland, C. Sagni, Self-assembled patterns and strain-induced instabilities for modulated systems, Phys. Rev. E 72 (2005) 021504.

DOI: 10.1103/physreve.72.021504

Google Scholar

[14] N. Abu-Libdeh, D. Venus, Dynamics of topological defects in a two-dimensional magnetic domain stripe pattern, Phys. Rev. B 84 (2011) 094428.

DOI: 10.1103/physrevb.84.094428

Google Scholar

[15] M.V. Logunov, M.V. Gerasimov, N.N. Loginov, A.V. Spirin, D.S. Kashkin, Formation of spatially homogeneous 2D magnetic domain patterns, in: IV Euro-Asian Symposium «Trends in Magnetism»: Nanospintronics (abstracts), Ekaterinburg, 2010, p.169.

DOI: 10.4028/www.scientific.net/ssp.190.737

Google Scholar