Alloys for Semi-Solid Processing

Article Preview

Abstract:

The main alloys which have been semi-solid processed commercially are based on aluminium (particularly the cast compositions) and magnesium. There is a strong drive to broaden the range of alloys to the wrought compositions for aluminium, more creep-resistant magnesium recipes and to higher temperature alloys such as those based on copper, steels, stellites and cast irons. This paper will summarise the issues with such development including the scientific and practical issues for alloy design and the thermodynamic prediction of alloys suitable for semi-solid processing. After an initial introduction to semi-solid processing routes, the most important alloy systems for semi-solid processing from a development point of view (aluminium, magnesium, steels and composites- including nanocomposites) will be discussed. The key issues of alloy design specifically for semi-solid processing will be drawn out through the text.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 192-193)

Pages:

16-27

Citation:

Online since:

October 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Spencer, R. Mehrabian, M.C. Flemings, Rheological Behavior of Sn-15 Pct Pb in the Crystallization Range, Metall. Trans. 3 (1972) 1925-32.

DOI: 10.1007/bf02642580

Google Scholar

[2] M.P. Kenney, J.A. Courtois, R.D. Evans, G.M. Farrior, C.P. Kyonka, A.A. Koch, K.P. Young, Semisolid Metal Casting and Forging, Metals Handbook, vol. 15, 9th ed., ASM International, Metals Park, OH, USA, 1988, pp.327-338.

Google Scholar

[3] H. LeHuy, J. Masounave, J. Blain, Rheological Behavior and Microstructure of Stir-Casting Zinc-Aluminium Alloys, J. Mater. Sci. 20 (1985) 105-113.

DOI: 10.1007/bf00555904

Google Scholar

[4] F.C. Bennett, U.S. Patent 4, 116, 423. (1978).

Google Scholar

[5] E.F. Fascetta, R.G. Riek, R. Mehrabian, M.C. Flemings, Die Casting Partially Solidified High Copper Content Alloys, Trans. AFS. 82 (1974) 95-100.

Google Scholar

[6] M.C. Flemings, K.P. Young, R.G. Riek, J.F. Boylan, R.L. Bye, Machine Casting of Ferrous Alloys, Interim Technical Report: ARPA Contract DAAG46-73-C-0110, November 1976. Available at http: /www. dtic. mil/dtic/tr/fulltext/u2/a035715. pdf.

DOI: 10.21236/ada027464

Google Scholar

[7] B. Toloui, J.V. Wood, Semi-Solid Processing of Titanium Alloys for Biomedical Applications, Mat. Res. Soc. Symp. Proc. Vol. 55, Biomedical Materials, pp.361-368.

Google Scholar

[8] J. Cheng, D. Apelian, R.D. Doherty, Processing-Structure Characterization of Rheocast IN-100 Superalloy, Metall. Trans. A. 17A (1986) 2049-(2062).

DOI: 10.1007/bf02645002

Google Scholar

[9] C.J. Quaak, Rheology of partially solidified alloys and composites. PhD Thesis. Technische Universiteit Delft, The Netherlands, (1996).

Google Scholar

[10] European patent 0745694A 1, Method and Apparatus for Shaping Semisolid Metals, UBE Industries Ltd, (1996).

Google Scholar

[11] T. Haga, Semisolid Strip Casting Using a Twin Roll Caster Equipped with a Cooling Slope, J. Mater. Process. Technol. 130-131 (2002) 558-561.

DOI: 10.1016/s0924-0136(02)00765-3

Google Scholar

[12] K.P. Young, C.P. Kyonka, J.A. Courtois, Fine Grained Metal Composition. US Patent 4, 415, 374, 30, March (1982).

Google Scholar

[13] D.H. Kirkwood, C.M. Sellars, L.G. Elias Boyed, Thixotropic Materials, European Patent 0305375 B1, 28 October (1992).

Google Scholar

[14] M.Z. Omar, H.V. Atkinson, E.J. Palmiere, A.A. Howe, P. Kapranos, Microstructural Development of HP 9/4/30 Steel During Partial Remelting, Steel Research International 75 (2004) 552-560.

DOI: 10.1002/srin.200405810

Google Scholar

[15] A.A. Kazakov, Alloy Compositions for Semisolid Forming, Advanced Materials & Processes 3 (2000) 31-34.

Google Scholar

[16] Y.Q. Liu, Z. Fan, J. Patel, Thermodynamic Approach to Aluminium Alloy Design for Semisolid Metal Processing, In: Tsutsui Y, Kiuchi M, Ichikawa K, editors. Proc 7th Int Conf Semi-Solid Processing of Alloys and Composites, Tsukuba, Japan, September 2002. National Institute of Advanced Industrial Science and Technology, Japan Society for Technology of Plasticity, Japan; 2002. pp.599-604.

Google Scholar

[17] A.M. Camacho, H.V. Atkinson, P. Kapranos, Thermodynamic Prediction of Wrought Alloy Compositions Amenable to Semi-Solid Processing, Acta Mater. 51 (2003) 2319-2330.

DOI: 10.1016/s1359-6454(03)00040-5

Google Scholar

[18] D. Liu, H.V. Atkinson, H. Jones, Thermodynamic Prediction of Thixoformability in Alloys Based on Al-Si-Cu and Al-Si-Cu-Mg Systems, Acta Mater. 53 (2005) 3807-3819.

DOI: 10.1016/j.actamat.2005.04.028

Google Scholar

[19] D. Liu, H.V. Atkinson, P. Kapranos, W. Jirattiticharoean, H. Jones, Microstructural Evolution and Tensile Mechanical Properties of Thixoformed High Performance Aluminium Alloys, Mater. Sci. Engng. A 361 (2003) 213-224.

DOI: 10.1016/s0921-5093(03)00528-8

Google Scholar

[20] D. Liu, H.V. Atkinson, P. Kapranos, H. Jones, Effect of Heat Treatment on Properties of Thixoformed High performance 2014 and 201 Aluminium Alloys, J. Mater. Sci. 39 (2004) 99-105.

DOI: 10.1023/b:jmsc.0000007732.04363.81

Google Scholar

[21] Y.Q. Liu and Z. Fan, Magnesium Alloy Selections for Semisolid Metal Processing, Op. Cit.

Google Scholar

[16] pages 587-592.

Google Scholar

[22] H. Wabusseg, G-C. Gullo, P.J. Uggowitzer, K. Steinhoff, H. Kaufmann, Structure and Properties of AlMgSi1 Alloy Tailored for Semi-Solid Forming, J. Mater. Sci. 37 (2002) 1173-1178.

DOI: 10.1023/a:1014315421781

Google Scholar

[23] S. Chayong, H.V. Atkinson, P. Kapranos, Multistep Induction Heating Regimes for Thixoforming 7075 Aluminium Alloy, Mater. Sci. Technol. 20 (2004) 490-496.

DOI: 10.1179/026708304225012341

Google Scholar

[24] F. D'Errico, B. Rivolta, R. Gerosa, G. Perricone, Thixomolded Magnesium Alloys: Strategic Product Innovation in Automobiles, JOM. 60 (2008) 70-76.

DOI: 10.1007/s11837-008-0152-6

Google Scholar

[25] G.Y. Yuan, Z.L. Liu, Q. D. Wang, W.J. Ding, Microstructure Refinement of Mg-Al-Zn-Si Alloys, Mater. Lett. 56 (2002) 53-58.

DOI: 10.1016/s0167-577x(02)00417-2

Google Scholar

[26] J.J. Kim, D.H. Kim, K.S. Shin, N.J. Kim, Modification of Mg2Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloys by Ca or P Addition, Scr. Mater. 41 (1999) 333-340.

DOI: 10.1016/s1359-6462(99)00172-4

Google Scholar

[27] W.W. Du, Y.S. Sun, X.G. Min, F. Xue, D.Y. Wu, Influence of Ca Addition on Valence Electron Structure of Mg17Al12, Trans. Nonferrous Metals Society of China 13 (2003) 1274-1279.

Google Scholar

[28] L. Wang, Z.F. Zhang, S.J. Zhu, M. Zhang, C.X. Zhang, S.K. Guan, Effects of Silicocalcium on Microstructure and Properties of Mg-6Al-0. 5Mn Alloy, Trans. Nonferrous Metals Society of China 16 (2006) 551-555.

DOI: 10.1016/s1003-6326(06)60096-4

Google Scholar

[29] G.Y. Yuan, Y.S. Sun, W.M. Zhang, Improvements of Tensile Strength and Creep Resistance of Mg-9Al Based Alloys with Antimony Addition, J. Materials Science Letters 18 (1999) 2055-(2057).

Google Scholar

[30] G.Y. Yuan, M.P. Liu, W.J. Ding, A. Inoue, Microstructure and Mechanical Properties of Mg-Zn-Si-Based Alloys, Mater. Sci. Engng. A 357 (2003) 314-320.

Google Scholar

[31] Z.H. Huang, X.F. Guo, Z.M. Zhang, Effect of Alloying on Microstructure and Mechanical Property of AZ91D Magnesium Alloy, Rare Metal Materials and Engineering 35 (2006) 363-366.

Google Scholar

[32] F. D'Errico, M. Boniardi, G. Perricone, D. Vujanovic, Influence of Microstructure on Mechanical Properties of an AZ91D Thixomolded Magnesium Alloy, Key Engineering Materials 348-349 (2007) 873-876.

DOI: 10.4028/www.scientific.net/kem.348-349.873

Google Scholar

[33] H.V. Atkinson, A. Rassili (editors), Thixoforming Steel. Shaker Verlag, Aachen; 2010. ISBN 978-3-8322-9133-4.

Google Scholar

[34] A. Rassili, H.V. Atkinson, A Review on Steel Thixoforming, Trans. Nonferrous Metals Society of China 20 (2010) S1048-S1054.

DOI: 10.1016/s1003-6326(10)60629-2

Google Scholar

[35] W. Puttgen, W. Bleck, G. Hirt, H. Shimahara, Thixoforming of Steels - A Status Report, Advanced Engineering Materials 9 (2007) 231-245.

DOI: 10.1002/adem.200700006

Google Scholar

[36] L. Rogal, J. Dutkiewicz, T. Czeppe, J. Bonarski, B. Olszowska-Sobieraj, Characteristics of 100Cr6 Bearing Steel after Thixoforming Process Performed with Prototype Device, Trans. Nonferrous Metals Society of China 20 (2010) S1033-S1036.

DOI: 10.1016/s1003-6326(10)60626-7

Google Scholar

[37] B. Masek, D. Aisman, M. Behulova, H. Jirkova, Structure of Miniature Components from Steel Produced by Forming in Semi-Solid State, Trans. Nonferrous Metals Society of China 20 (2010) S1037-S1041.

DOI: 10.1016/s1003-6326(10)60627-9

Google Scholar

[38] E. Becker, V. Favier, R. Bigot, P. Cezard, L. Langlois, Impact of Experimental Conditions on Material Response During Forming of Steel in Semisolid State, J. Materials Process. Technol. 210 (2010) 1482-1492.

DOI: 10.1016/j.jmatprotec.2010.04.006

Google Scholar

[39] M.Z. Omar, H.V. Atkinson, P. Kapranos, Thixotropy in Semi-Solid Steels under Rapid Compression, Metall. Mater. Trans. A 42A (2011) 2807-2819.

DOI: 10.1007/s11661-011-0671-6

Google Scholar

[40] P. Cezard, T. Sourmail, Thixoforming of Steel: A State of the Art from an Industrial Point of View, Solid State Phenomena 141-143 (2008) 25-35.

DOI: 10.4028/www.scientific.net/ssp.141-143.25

Google Scholar

[41] M.Z. Omar, H.V. Atkinson, A.A. Howe, E.J. Palmiere, P. Kapranos, M. Ghazali, Solid-Liquid Structural Breakup in M2 Tool Steel for Semi-Solid Metal Processing, J. Mater. Sci. 44 (2009) 869-874.

DOI: 10.1007/s10853-008-3181-1

Google Scholar

[42] S. Dziallach, W. Puettgen, W. Bleck, Development of Adapted Heat Treatment for Steels out of the Semi-Solid State after Thixoforming, Solid State Phenomena 141-143 (2008) 695-700.

DOI: 10.4028/www.scientific.net/ssp.141-143.695

Google Scholar

[43] S. Meyer, W. Bleck, Microstructural and Rheological Aspects in Thixoforming of Aluminium and Steel, In: Bhasin AK, Moore JJ, Young KP, Midson S, editors. Proc 5th Int Conf Semi-Solid Processing of Alloys and Composites, Golden, Colorado, US, June 1998. Colorado School of Mines, US, 1998, pp.361-369.

Google Scholar

[44] P. Kapranos, D.H. Kirkwood, C.M. Sellars, Semisolid Processing of Tool Steel, J. de Physique IV 3 (1993) 835-840.

DOI: 10.1051/jp4:19937131

Google Scholar

[45] M.Z. Omar, E.J. Palmiere, A.A. Howe, H.V. Atkinson, P. Kapranos, Thixoforming of a High Performance HP9/4/30 Steel, Mater. Sci. Engng. A 395 (2005) 53-61.

DOI: 10.1016/j.msea.2004.12.013

Google Scholar

[46] Y. Birol, High Temperature Abrasive Wear Testing of Potential Tool Materials for Thixoforming Steels, Tribology Int. 43 (2010) 2222-2230.

DOI: 10.1016/j.triboint.2010.07.011

Google Scholar

[47] Y. Birol, D. Isler, Thermal Cycling of AlTiN- and AlTiON-Coated Hot Worked Tool Steels at Elevated Temperatures, Mater. Sci. Engng. A 528 (2011) 4703-4709.

DOI: 10.1016/j.msea.2011.02.076

Google Scholar

[48] W. Puttgen, M. Pant, W. Bleck, I. Seidl, R. Rabitsch, C. Testani, Selection of Suitable Tool Materials and Development of Tool Concepts for the Thixoforging of Steels, Steel Research Int. 77 (2006) 342-348.

DOI: 10.1002/srin.200606396

Google Scholar

[49] M. Bunck, E. Subasic, A. Buhrig-Polaczek, K. Jiang, S. Munstermann, J.M. Schneider, K. Fickert, H.J. Gunther, Thixocasting Steel Hand Tools using Al2O3-Coated Steel and Molybdenum Dies, Steel Research Int. 81 (2010) 581-588.

DOI: 10.1002/srin.201000032

Google Scholar

[50] S. Munstermann, R. Telle, Ceramic Tool Concepts for the Semi-Solid Processing of Steel Alloys, Material Wissenschaft und Werkstofftechnik 37 (2006) 324-328.

DOI: 10.1002/mawe.200600997

Google Scholar

[51] J. Lecomte-Beckers, A. Rassili, M. Robelet, C. Poncin, R. Koeune, Determination of Solidification Parameters Used for the Prediction of the Thixoformability of Several Steel Alloys, Solid State Phenomena 116-117 (2006) 54-7.

DOI: 10.4028/www.scientific.net/ssp.116-117.54

Google Scholar

[52] Final Report of European Project G5RD-CT-2002-00684 Adapted Steel Parts.

Google Scholar

[53] A.R.A. McLelland, H.V. Atkinson, P. Kapranos, D.H. Kirkwood, Thixoforming Spray-Formed Aluminium Silicon-Carbide Metal Matrix Composites, Materials Letters 11 (1991) 26-30.

DOI: 10.1016/0167-577x(91)90183-7

Google Scholar

[54] T.J. Chen, M.F. Fu, Y. Ma, Y.D. Li, Y. Hao, Microstructural Evolution of Grain Refined In Situ Si-p/ZA27 Composite During Partial Remelting, Mater. Sci. Technol. 27 (2011) 1183-1190.

DOI: 10.1179/026708310x12668415533766

Google Scholar

[55] I. Ozdemir, S. Muecklich, H. Podlesak, B. Wielage, Thixoforming of AA2017 Aluminium Alloy Composites, J. Mater. Process. Technol. 211 (2011) 1260-1267.

DOI: 10.1016/j.jmatprotec.2011.02.008

Google Scholar

[56] H. Yan, J.J. Wang, Thixotropic Compression Deformation Behaviour of SiCp/AZ61 Magnesium Matrix Composites, Trans. Nonferrous Metals Society of China 20 (2010) S811-S814.

DOI: 10.1016/s1003-6326(10)60586-9

Google Scholar

[57] K.S. Yoon, S.M. Lee, C.G. Kang, Two-Phase Flow Characteristics in Hollow Shape Fabrication Process of Metal Matrix Composites by Thixoforging, J. Mater. Engng. & Performance 17 (2008) 432-444.

DOI: 10.1007/s11665-007-9159-3

Google Scholar

[58] Y.S. Cheng, S.J. Luo, Z.M. Du, Thixoforming of SiC Ceramic Matrix Composites in Pseudo Semi-Solid State, Trans. Nonferrous Metals Society of China 15 (2005) 1062-1066.

Google Scholar

[59] C.G. Kang, S.W. Youn, Mechanical Properties of Particulate Reinforced Composites by Electromagnetic and Mechanical Stirring and Related Process for Thixoforming, J. Mater. Process. Technol. 147 (2004) 10-22.

DOI: 10.1016/s0924-0136(03)00606-x

Google Scholar

[60] S.K. Kim, Y.J. Kim, Microstructural Evolution and Thixoformability of Semisolid SiCp/AZ91D Mg Composites, Materials Trans. 42 (2001) 1277-1283.

DOI: 10.2320/matertrans.42.1277

Google Scholar

[61] A.R.A. McLelland, H.V. Atkinson, P.R.G. Anderson, Thixoforming of a Novel Layered Metal Matrix Composite, Mater. Sci. Technol. 15 (1999) 939-945.

DOI: 10.1179/026708399101506616

Google Scholar

[62] P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, J.M. Rodriguez-Ibabe, Semi-Solid Processing of Novel MMCs Based on Hypereutectic Aluminium-Silicon Alloys, Acta Mater. 44 (1996) 1717-1727.

DOI: 10.1016/1359-6454(95)00356-8

Google Scholar

[63] C. Vives, F. Adam, Thixoforming of Electromagnetically Elaborated Aluminium Alloy Slurries and Semisolid Matrix Composites, Materials Sci. Forum 217 (1996) 329-333.

DOI: 10.4028/www.scientific.net/msf.217-222.329

Google Scholar

[64] S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Advanced Engineering Materials 9 (2007) 639-652.

DOI: 10.1002/adem.200700106

Google Scholar

[65] Y. Yang, J. Lan, X. Li, Study on Bulk Aluminium Matrix Nano-composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminium Alloy, Mater. Sci. Engng. A 380 (2004) 378-383.

DOI: 10.1016/j.msea.2004.03.073

Google Scholar

[66] Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, J.M. Schoenung, Investigation of Aluminium-Based Nanocomposites with Ultra-High Strength, Mater. Sci. Engng. A 527 (2009) 305-316.

DOI: 10.1016/j.msea.2009.07.067

Google Scholar

[67] M. De Cicco, H. Konishi, G. Cao, H.S. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, Strong, Ductile, Magnesium-Zinc Nanocomposites, Metall. Mater. Trans. A 40A (2009) 3038-3045.

DOI: 10.1007/s11661-009-0013-0

Google Scholar

[68] S. Kandemir, D.P. Weston, H.V. Atkinson, Production of A356/TiB2 Nanocomposite Feedstock for Thixoforming by an Ultrasonic Method, to be published in Proc. Int. Conf. S2P2012, Cape Town, South Africa, October (2012).

DOI: 10.4028/www.scientific.net/ssp.192-193.66

Google Scholar