[1]
A.N. Alexandrou, Y. Pan, D. Apelian and G. Georgiou, "Semisolid material characterization using computational rheology," in Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites, Y. Tsutsui, M. Kiuchi, K. Ichikawa (Eds.), Tsukuba, Japan (2002) 417-422.
Google Scholar
[2]
M. Modigell, J. Koke, Time-depended rheological properties of semisolid metal alloys, Mech. Time-Dependent Mater. 3 (1999) 15-30.
Google Scholar
[3]
L. Azzi, F. Ajersch, Analytical modelling of the rheological behavior of semisolid metals and composites, Metall. Mater. Trans. B 37 (2006) 1067-1074.
DOI: 10.1007/bf02735029
Google Scholar
[4]
V. Favier, H. Atkinson, Analysis of semi-solid response under rapid compression test using multi-scale modelling and experiments, Trans. Nonferrous Met. Soc. China 20 (2010) 1691-1695.
DOI: 10.1016/s1003-6326(09)60359-9
Google Scholar
[5]
J. Koke, M. Modigell, Flow behavior of semi-solid metal alloys, J. Non-Newtonian Fluid Mech. 112 (2003) 141-160.
DOI: 10.1016/s0377-0257(03)00080-6
Google Scholar
[6]
A.N. Alexandrou, G. Georgiou, On the early breakdown of semisolid suspensions, J. Non-Newtonian Fluid Mech. 142 (2007) 199-206.
DOI: 10.1016/j.jnnfm.2006.09.003
Google Scholar
[7]
B.P. Gautham, P.C. Kapur, Rheological model for short duration response of semi-solid metals, Mat. Sci. Eng. A393 (2005) 223-228.
DOI: 10.1016/j.msea.2004.10.028
Google Scholar
[8]
R. Koeune, J.-P. Ponthot, An improved constitutive model for the numerical simulation of semi-solid thixoforming, J. Comp. Appl. Math. 234 (2010) 2287-2296.
DOI: 10.1016/j.cam.2009.08.085
Google Scholar
[9]
A. Potanin, 3D simulation of the flow of thixotropic fluids, in large-gap Couette and vane-cup geometries, J. Non-Newtonian Fluid Mech. 165 (2010) 299-312.
DOI: 10.1016/j.jnnfm.2010.01.004
Google Scholar
[10]
H.A. Ardakani, E. Mitsoulis, S.G. Hatzikiriakos, Thixotropic flow of toothpaste through extrusion dies, J. Non-Newtonian Fluid Mech. 166 (2011) 1762-1271.
DOI: 10.1016/j.jnnfm.2011.08.004
Google Scholar
[11]
D.N. Smyrnaios, J.A. Tsamopoulos, Squeeze flow of Bingham plastics, J. Non-Newtonian Fluid Mech. 100 (2001) 165-190.
DOI: 10.1016/s0377-0257(01)00141-0
Google Scholar
[12]
J. Engmann, C. Serrais, A.S. Burbidge, Squeeze flow theory and applications to rheometry: A review, J. Non-Newtonian Fluid Mech. 132 (2005) 1-27.
DOI: 10.1016/j.jnnfm.2005.08.007
Google Scholar
[13]
P. Kumar, C.L. Martin, S. Brown, Constitutive modeling and characterization of the flow behavior of semi-solid metal alloy slurries. I. The flow response, Acta Met. Mater. 42(11) (1994) 3595-3602.
DOI: 10.1016/0956-7151(94)90426-x
Google Scholar
[14]
G.C. Florides, A.N. Alexandrou, G. Georgiou, Flow development in compression of a finite amount of a Bingham plastic, J. Non-Newtonian Fluid Mech. 143 (2007) 38-47.
DOI: 10.1016/j.jnnfm.2007.01.004
Google Scholar
[15]
G.R. Burgos, A.N. Alexandrou, V.M. Entov, Thixotropic behavior of semisolid slurries, J. Mater. Process Techn. 110 (2001) 164-176.
DOI: 10.1016/s0924-0136(00)00731-7
Google Scholar
[16]
T.C. Papanastasiou, Flows of materials with yield, J. Rheol. 31 (1987) 385-404.
Google Scholar
[17]
K.R.J. Ellwood, G.C. Georgiou, T.C. Papanastasiou, J.O. Wilkes, Laminar jets of Bingham-plastic liquids, J. Rheol. 34 (1990) 787-812.
DOI: 10.1122/1.550144
Google Scholar