Relationship between Micro-/Nano-Structure and Stress Development in TM-Doped Mg-Based Alloys Absorbing Hydrogen

Article Preview

Abstract:

In the most recent years, MgH2 has attracted considerable attention for reversible hydrogen storage purposes because of a large 7.6 w% H-uptake, single plateau reaction at low pressure and abundance of metal. If the Mg ↔ H reactions take place at rather high temperature (> 300°C), the kinetic remains very low. However, early transition metal based additives (Ti, V, Nb...) improve dramatically the kinetics of hydrogen absorption/desorption, while having no essential impact on the reversible sorption capacity. Systematic analysis of many experimental data led to question chemical, physical, mechanical... parameters contributing significantly to improve the kinetics of absorption/desorption. Besides, results of theoretical and numerical computation enlighten the impact of structural and mechanical parameters owing to the local bonds of Mg/MgH2 with of TM elements, in terms of total energy and electronic structure. More specifically, we found highly relevant to consider 1 - the impact of the crystallite sizes of Mg and the TM-phase, 2 - the role of internal and external stresses, as well as 3 - the role of texture on the kinetics of hydrogen absorption/desorption. Apart the previous considerations, we like to underline the role of specific TM in trapping intermediately hydrogen thus forming TMHx prior initiating the Mg ↔ MgH2 nucleation process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 194)

Pages:

237-244

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Oelerich, T. Klassen, R. Bormann, J. Alloys Compd. 315 (2001) 237.

Google Scholar

[2] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 291 (1999) 295.

Google Scholar

[3] Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T.K. Bose, R. Schulz, J. Alloys Compd., 347 (2002) 319.

DOI: 10.1016/s0925-8388(02)00784-3

Google Scholar

[4] K.B. Gerasimov, I.G. Konstanchuk, S.A. Chizhik, J-L. Bobet, Int. J. Hydrogen Energy 34 (2009) 1916.

Google Scholar

[5] Ji Woo Kim, Jae Pyong Ahn, Seon Hoon Lee, Hee-Suk Chung, Jae-Hyok Shim, Young Whan Cho, Kyu Hwan Oh, J. Power Science, 178 (2008) 373.

Google Scholar

[6] D. Fruchart, P. de Rango, J. Charbonnier, S. Miraglia, S. Rivoirard, N. Skryabina, M. Jehan, Patent FR0601615 (2006).

Google Scholar

[7] Information on McPhy-Energy: www.mcphy.com

Google Scholar

[8] Z. Dehouche, R. Djaozandry, J. Huot, S. Boily, J. Goyette, R. Schulz, J. Alloys Compd. 305 (2000) 264.

DOI: 10.1016/s0925-8388(00)00718-0

Google Scholar

[9] A. Percheron-Guégan, C. Lartigue, J.C. Achard, P. Germi, F. Tasset, J. Less-Common Met. 189 (1988) 287.

Google Scholar

[10] B. Bogdanović, K. Bohmammel, B. Christ et al. J. Alloys Compd. 282 (1999) 84.

Google Scholar

[11] K. Zeng, T. Klassen, W Oelerich, R. Bormann, Int. J. Hydr. Energy 24 (1999) 989.

Google Scholar

[12] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 292 (1999) 247.

Google Scholar

[13] J. Charbonnier, PhD Thesis, Grenoble University, France (2006).

Google Scholar

[14] D. R. Leiva, T.T. Ishikawa, A.M. Jorge-Junior, S. Miraglia, D. Fruchart, W.J. Botta, SCTE Lisboã, submitted to Solid State Phenomena (2012).

Google Scholar

[15] G.A. Corn, T.M. Corn, Mathematical Handbook, McGraw-Hill Book Co, 1968, p.830.

Google Scholar

[16] N.Ye Skryabina, V.M. Pinyugzhanin, D. Fruchart, Bull. Perm University, Physics 2 (2012) 61.

Google Scholar

[17] D. Fruchart, S. Miraglia, P. de Rango, N. Skryabina, M. Jehan, J. Huot, J. Lang, S. Pednault, Patent WO 2012/007657 A1 (2012).

Google Scholar

[18] J. Friedel, in Dislocations, Pergamon Press (1964) p.638; R.W. Cahn, P. Haasen, in Physical Metallurgy, Elsevier Science Pub. (1983) p.620.

Google Scholar

[19] V.G. Gryaznov, J.A. Polonsky, A.E. Romanov, L.J. Trusov, Phys. Rev. B 44 (1991) 42.

Google Scholar

[20] M. Danaie, S.X. Tao, P. Kalievaart, D. Mitlin, Acta Materialia 58 (2010) 3162.

Google Scholar

[21] Seon-Ah Jin, Jae-Hyeok Shim, Jae-Pyong Ahn et al., Acta Materialia 55 (2007) 5073.

Google Scholar

[22] G. Girard, PhD Thesis, Grenoble University, France (2010).

Google Scholar

[23] T. Sato, D. Kyoi, E. Rönnebro, N. Kitamua, T. Sakai, D. Noréus, J. Alloys Compd. 417 (2006) 230.

Google Scholar

[24] M.G. Shelyapina, D. Fruchart, S. Miraglia, G. Girard, Phys. Sol. State 53 (2011) 5.

Google Scholar

[25] W. Stier, L.G. Camargo, F. Óskarsson, H. Jónsson, Am. Chem. Soc. Div. 50(1) (2005) 15.

Google Scholar

[26] M.G. Shelyapina, Yu Siretskiy, Phys. Sol. State 52(9) (2010) 1992.

Google Scholar

[27] Ming Chen, Xiao-Bao Yang, Jie Cui, Jia-Jun Tang, Li-Yong Gan, Min Zhu, Yu-Jun Zhao, Intern. J. Hydrogen Energy 37 (2012) 309.

Google Scholar

[28] N.Ye Skryabina, V.M. Pinyugzhanin, A. Vasyanin, D. Fruchart, Bull. Perm University, Physics, (2012) to appear.

Google Scholar

[29] K. Klyukin, M.G. Shelyapina, D. Fruchart, Solid State Phenomena 170 (2011) 398.

Google Scholar