Rubber Structural Coupon Behaviour Study under Pressure Impulse

Article Preview

Abstract:

This study focuses on the rubber material behaviour assessment under dynamic loading using numerical methods. Consequently, dynamic simulations of the rubber structural coupon subjected to dynamic velocity loading were performed using the explicit integration procedure with central difference scheme with modified time integration of the equation of motion implementation. During investigations two impulse velocities were used and compared for two different constitutive materials: Mooney-Rivlin without rate-dependency and Mat 181 Simplified Rubber which includes strain rate effects. From the obtained results it was noticed that material behaviour in both cases is different and along with different values of velocity the strain rate sensitivity changes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 198)

Pages:

394-399

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ochelski and others, Influence of hardness on mechanical properties of elastomers, Journal of KONES, 17 317-325.

Google Scholar

[2] A. Krawczyk and others, Mechanics of polymer and composite materials, Science (1985).

Google Scholar

[3] C. M. Roland, Mechanical behaviour of rubber at high strain rates, Rubber Chemistry and Technology, 79 (2006) 429-459.

DOI: 10.5254/1.3547945

Google Scholar

[4] W. Chen, F. Lu, D. J. Frew, M. J. Forrestal, Dynamic compressive testing of soft materials, Journal of Applied Mechanics, 69 (2002) 214–223.

DOI: 10.1115/1.1464871

Google Scholar

[5] S. J. Quintavalla, S. H. Johnson, Extension of the Bergstrom–Boyce model to high strain rates, Rubber Chemistry and Technology, 77 (2005) 972–981.

DOI: 10.5254/1.3547863

Google Scholar

[6] P. A . Du Bois, S. Kolling, S. Fassnacht, Material modeling with LS-DYNA for crashworthiness analysis, LS-Dyna forum, Germany, 2: 1-56 (2002).

Google Scholar

[7] Y. Chen and others, Crash dynamics of square honeycomb thin rubber wall, Thin-Walled Structures, 47 (2009) 1447-1456.

DOI: 10.1016/j.tws.2009.07.007

Google Scholar

[8] P. A . Du Bois, S. Kolling, S. Fassnacht, Material behaviour of polymers under impact loading, International Journal of Impact Engineering, 32 (2006) 725-740.

DOI: 10.1016/j.ijimpeng.2005.02.007

Google Scholar

[9] M. S. Hoo Fat, I. Bekar, High-speed testing and material modelling of unfilled styrene butadiene vulcanizates at impact rates, Journal of Materials Science, 39 (2004) 6885–6899.

DOI: 10.1023/b:jmsc.0000047530.86758.b9

Google Scholar

[10] I. Bekar, M. S. Hoo Fatt, J. Padovan, Deformation and fracture of rubber under tensile impact loading, Tire Science Technology, 30 (2002) 45.

DOI: 10.2346/1.2135247

Google Scholar

[11] N. S. Al-Maliky, D. J. Parry, A freely expanding ring technique for measuring the tensile properties of polymers, Materials Science Technology, 7 (1996) 746-752.

DOI: 10.1088/0957-0233/7/5/004

Google Scholar

[12] W. H. Gourdin, S. L. Weinland, R. M. Boling, Development of the electromagnetically launched expanding ring as a high-strain-rate test technique, Review of Scientific Instruments, 60, (1989) 427-432.

DOI: 10.1063/1.1140395

Google Scholar

[13] P. Kainradl, F. Händler, Heat Build-Up and Destruction of Vulcanizates under Dynamic Stress, 33 (1960) 1438.

Google Scholar

[14] L. Kruszka, Badania eksperymentalne własności statycznych i dynamicznych stali budowlanych dla potrzeb konstrukcji ochronnych i obronnych, Seminar Materials of Military University of Technology (2008).

Google Scholar

[15] ANSYS, Hyperelasticity, Structural Nonlinearities, 6 (1999) Second Edition Release 5. 5.

Google Scholar

[16] M. Mooney, A theorie of elastic deformations, Journal of Application Physics, 11 (1940) 582-592.

Google Scholar

[17] R. S. Rivlin, Large elastic deformations of isotropic materials, Fundamental Concepts, Philos Trans R Soc Land Ser A, 240 (1948) 459-490.

DOI: 10.1098/rsta.1948.0002

Google Scholar

[18] J.O. Hallquist, LS-Dyna: Theoretical manual, California Livermore Software Technology Corporation (2003).

Google Scholar

[19] D.J. Benson, S. Kolling, P.A. Du Bois, A simplified approach for strain-rate dependent hyperelastic materials with damage, 9-th International LS-DYNA Users Conference, 15 (2006) 29-36.

Google Scholar

[20] R.W. Ogden, Elastic deformations of rubberlike solids, Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Oxford (1982).

DOI: 10.1016/b978-0-08-025443-2.50021-5

Google Scholar

[21] P. Baranowski, J. Małachowski, Blast wave and suspension system interaction- numerical approach, Journal of KONES, 18: 1 (2011) 23-30.

Google Scholar

[22] P. Baranowski, J. Małachowski, T. Niezgoda, Numerical analysis of vehicle suspension system response subjected to blast wave, Applied Mechanics and Materials, 82 (2011) 728-733.

DOI: 10.4028/www.scientific.net/amm.82.728

Google Scholar