Polyol Synthesis and Properties of AFe2O4 Nanoparticles (A = Mn, Fe, Co, Ni, Zn) with Spinel Structure

Article Preview

Abstract:

Nanosized particles of AFe2O4 compounds (A = Mn, Fe, Co, Ni, Zn) with spinel structure have been synthesized by precipitation from glycol solutions. Diethylene glycol (DEG) was used as high-boiling alcohol medium. Based on NMR studies, the peculiarities of the formation of nanoparticles in glycol solution using metal nitrates as initial reagents have been considered. For the synthesized compounds crystallographic, microscopical and magnetic investigations have been carried out.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

149-155

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.P. Gubin, Magnetic Nanoparticles, Wiley-VCH, Weinheim, (2009).

Google Scholar

[2] S. Solopan, А. Belous, A. Yelenich, L. Bubnovskaya, A. Kovelskaya, A. Podoltsev, I. Kondratenko, S. Osinsky, Experimental Oncology 33 (2011) 130-135.

Google Scholar

[3] M.M. El-Okr, M.A. Salema, M.S. Salim, R.M. El-Okr, M. Ashous, H.M. Talaat, Synthesis of cobalt ferrite nano-particles and their magnetic characterization, J. Magn. Magn. Mater. 323 (2011) 920.

DOI: 10.1016/j.jmmm.2010.11.069

Google Scholar

[4] K. Maaz, Arif Mumtaz, S.K. Hasanain, Abdullah Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater. 308 (2007) 289.

DOI: 10.1016/j.jmmm.2006.06.003

Google Scholar

[5] H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, J. Colloid Interf. Sci. 314 (2007) 274280.

DOI: 10.1016/j.jcis.2007.05.047

Google Scholar

[6] K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Synthesis of nickel zinc iron nanoparticles by coprecipitation technique, Materials Research 13 (2010) 299-303.

DOI: 10.1590/s1516-14392010000300005

Google Scholar

[7] B.L. Cushing, V.L. Kolesnichenko, and C.J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 104 (2004) 3893-3946.

DOI: 10.1021/cr030027b

Google Scholar

[8] C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003) 101-107.

DOI: 10.1002/adfm.200390014

Google Scholar

[9] Information on http: /www. nicnas. gov. au/publications/car/Other/DEG_Hazard_Assessment_Report_PDF. pdf.

Google Scholar

[10] D. Caruntu et al., Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions, Inorg. Chem. 41 (2002).

DOI: 10.1021/ic025664j

Google Scholar

[11] N.S. Frumina, N.F. Lisenko, M.A. Chernova, Analytical Chemistry of Elements. Chlorine (in Russian), Nauka, Moscow, (1983).

Google Scholar

[12] Caruntu D. et al., Chem. Mater. 16 (2004) 5527-5534.

Google Scholar

[13] P. Sivakumar R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties, Mater. Lett. 65 (2011) 1438-1440.

DOI: 10.1016/j.matlet.2011.02.026

Google Scholar

[14] L. Zhang, R. He, H. -C. Gu, Appl. Surf. Sci. 253 (2006) 2611-2617.

Google Scholar

[15] S.Y. Lee, M.T. Harris, J. Colloid Interface Sci. 293 (2006) 401-408.

Google Scholar

[16] V. Perez-Dieste, O. M. Castellini, J. N. Crain et al. Appl. Phys. Lett. 83 (2003) 5053-5055.

Google Scholar

[17] J. Töpfer, A. Angermann, Mater. Chem. Phys. 129 (2011) 337-342.

Google Scholar

[18] S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42 (2009) 013001 (1-28).

Google Scholar

[19] J. Smit and HPJ Wijn, Ferrites, Wiley, New York, 1959. 1.

Google Scholar