[1]
Y. Douy, R.G. Egdellyk, D.S.L. Lawz, N.M. Harrison, B.G. Searle, An experimental and theoretical investigation of the electronic structure of CdO, J. Phys.: Condens. Matter 10 (1998) 8447-8458.
DOI: 10.1088/0953-8984/10/38/006
Google Scholar
[2]
Jungkeun Lee, Changhyun Jin, Hyunsu Kim and Chongmu Lee, Structure and Luminescence of CdO-coated ZnSe Nanorods, J. Korean Phys. Soc., 58 (2011) 1279-1283.
DOI: 10.3938/jkps.58.1279
Google Scholar
[3]
A. A. Dakhel, H. Hamad, Investigation on high carrier mobility in chromium incorporated CdO thin films on glass, Int. J. Thin Film Sci. Tec. 1 (2012) 25-33.
Google Scholar
[4]
S. Syrotyuk, V. Shved, Electron energy bands of CdO crystal evaluated with accounting of the strong correlated electrons, Proceedings of International Conference on Oxide Materials for Electronic Engineering – fabrication, properties and applications, OMEE-2012, September 3-7, 2012 Lviv, Ukraine, Publishing House of Lviv Polytechnic (2012) 142-143.
DOI: 10.1109/omee.2012.6464813
Google Scholar
[5]
Y. Yang, S. Jin, J.E. Medvedeva, J.R. Ireland, A.W. Metz, J. Ni, M.C. Hersam, A.J. Freeman, T.J. Marks, CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure, J. Am. Chem. Soc. 127 (2005) 8796-8804.
DOI: 10.1021/ja051272a
Google Scholar
[6]
Y. Sharma, P. Srivastava, Study of electronic and optical properties of Sc-, Y-, Ti-doped transparent conducting oxide, Indian J. of Pure & Appl. Phys. 49 (2011) 619-626.
Google Scholar
[7]
A.R. Tackett, N.A.W. Holzwarth, G.E. Matthews, Computer Physics Communications, A projector augmented wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis, 135 (2001) 348-376.
DOI: 10.1016/s0010-4655(00)00241-1
Google Scholar
[8]
N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, A projector augmented wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, Computer Physics Communications, 135 (2001) 329-347.
DOI: 10.1016/s0010-4655(00)00244-7
Google Scholar
[9]
N.A.W. Holzwarth, G.E. Matthews, R.B. Dunning, A.R. Tackett, Y. Zeng, Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids, Phys. Rev. B 55 (1997) 2005-2017.
DOI: 10.1103/physrevb.55.2005
Google Scholar
[10]
X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker , D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach of materials and nanosystem properties. Computer Physics Communications, 180 (2009) 2582-2615.
DOI: 10.1016/j.cpc.2009.07.007
Google Scholar
[11]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Letters, 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[12]
F. Jollet, G. Jomard, B. Amadon, J. P. Crocombette, D. Torumba, Hybrid functional for correlated electrons in the projector augmented-wave formalism: Study of multiple minima for actinide oxides, Phys. Rev. B 80 (2009) 235109(8).
DOI: 10.1103/physrevb.80.235109
Google Scholar
[13]
S. Calnan, A. N. Tiwari, Thin Solid Films, High mobility transparent conducting oxides for thin film solar cells, 518 (2010) 1839-1849.
DOI: 10.1016/j.tsf.2009.09.044
Google Scholar