Phase and Crystal Structure Behaviour of Bi1-xRxFeO3 (R = Er, Tm, Yb)

Article Preview

Abstract:

The title compounds were prepared by sintering of the stoichiometric amounts of the oxides of the constituent elements at 820 °C in air. X-ray powder diffraction examinations revealed that the polar R3c phase in the Bi1-xRxFeO3 systems with R = Er, Tm and Yb do not exceed 7, 4 and 3 mol.% of rare earth, respectively. Partial substitution of the Bi sites by Er and Tm in BiFeO3 reduces the temperature of the ferroelectric phase transition R3cPbnm on 30–60 K.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

100-107

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.O. Troyanchuk, D.V. Karpinsky, M.V. Bushinsky, O.S. Mantytskaya, N.V. Tereshko, V.N. Shut, Phase transitions, magnetic and piezoelectric properties of rare-earth-substituted BiFeO3 ceramics, J. Am. Ceram. Soc. 94 (2011) 4502–4506.

DOI: 10.1111/j.1551-2916.2011.04780.x

Google Scholar

[2] R. Rai, S. K. Mishra, N.K. Singh, S. Sharma, A. L. Kholkin, Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R = La and Er ceramics, Curr. Appl. Phys. 11 (2011) 508–512.

DOI: 10.1016/j.cap.2010.09.003

Google Scholar

[3] N.V. Minh, D.V. Thang, Dopant effects on the structural, optical and electromagnetic properties in multiferroic Bi1−xYxFeO3 ceramics, J. Alloys Compd. 505 (2011) 619–622.

DOI: 10.1016/j.jallcom.2010.06.093

Google Scholar

[4] V.F. Freitas, H.L.C. Grande, S.N. de Medeiros, I.A. Santos, L.F. Cotica, A.A. Coelho, Structural, microstructural and magnetic investigationsn in high-energy ball milled BiFeO3 and Bi0.95Eu0.05FeO3 powder, J. Alloys Compd. 461 (2008) 48–52.

DOI: 10.1016/j.jallcom.2007.07.069

Google Scholar

[5] S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics, J. Mater. Sci. 44 (2009) 5102–5112.

DOI: 10.1007/s10853-009-3545-1

Google Scholar

[6] V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3, Acta Mater. 57 (2009) 5137–5145.

DOI: 10.1016/j.actamat.2009.07.013

Google Scholar

[7] V.A. Khomchenko, I.O. Troyanchuk, M.V. Bushinsky, O.S. Mantytskaya, V. Sikolenko, J.A. Paixão, Structural phase evolution in Bi7/8Ln1/8FeO3 (Ln = La–Dy) series, Mater. Lett. 65 (2011) 1970–1972.

DOI: 10.1016/j.matlet.2011.04.009

Google Scholar

[8] V.A. Khomchenko, J.A. Paixão, D.A. Kiselev, A.L. Kholkin, Intermediate structural phases in rare-earth substituted BiFeO3, Mater. Res. Bull. 45 (2010) 416–419.

DOI: 10.1016/j.materresbull.2009.12.018

Google Scholar

[9] Y.-J. Zhang, H.-G. Zhang, J.-H. Yin, H.-W. Zhang, J.-L. Chen, W.-G. Wang, G.-H. Wu, Structural and magnetic properties in Bi1-xRxFeO3 (x = 0–1, R = La, Nd, Sm, Eu and Tb) polycrystalline ceramics, J. Magn. Magn. Mater. 322 (2010) 2251–2255.

DOI: 10.1016/j.jmmm.2010.02.020

Google Scholar

[10] N.V. Minh, N.G. Quan, Structural, optical and electromagnetic properties of Bi1-xHoxFeO3 multiferroic, J. Alloys Compd. 509 (2011) 2663–2666.

DOI: 10.1016/j.jallcom.2010.12.033

Google Scholar

[11] J.-B. Li, G.H. Rao, Y. Xiao, J.K. Liang, J. Luo, G.Y. Liu, J.R. Chen, Structural evolution and properties of Bi1-xGdxFeO3 ceramics, Acta Mater. 58 (2010) 3701–3708.

DOI: 10.1016/j.actamat.2010.03.007

Google Scholar

[12] D.A. Rusakov, A.M. Abakumov, K. Yamaura, A.A. Belik, G. Van Tendeloo, E. Takayama-Muromachi, Structural evolution of the BiFeO3–LaFeO3 system, Chem. Mater. 23 (2011) 285–292.

DOI: 10.1021/cm1030975

Google Scholar

[13] I. Levin, S. Karimi, V. Provenzano, C.L. Dennis, H. Wu, T.P. Comyn, T.J. Stevenson, R.I. Smith, I.M. Reaney, Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1-xNdxFeO3 (0.15 < x < 0.25), Phys. Rev. B81 (2010) 020103 (12pp).

Google Scholar

[14] M. Marezio, J.P. Remeika, P.D. Dernier, The crystal chemistry of the rare earth orthoferrites, Acta Cryst. B26 (1970) 2008–2022.

DOI: 10.1107/s0567740870005319

Google Scholar

[15] D.C. Arnold, K.S. Knight, F.D. Morrison, P. Lightfoot, Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic b phase, Phys. Rev. Lett. 102 (2009) 027602 (4pp).

Google Scholar

[16] A. Palewicz, I. Sosnowska, R. Przeniosło, A.W. Hewat, BiFeO3 crystal structure at low temperatures, Acta Phys. Pol. A 117 (2010) 296–301.

DOI: 10.12693/aphyspola.117.296

Google Scholar

[17] A. Palewicz, R. Przeniosło, I. Sosnowska, A.W. Hewat, Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study, Acta Crystallogr. B63 (2007) 537–544.

DOI: 10.1107/s0108768107023956

Google Scholar