[1]
M. Voda, R. Balda, I. Sáez de Ocáriz, L.M. Lacha, M.A. Illarramendi, J. Fernández, Spectroscopic properties of rare earths in K5Bi1−x(RE)x(MoO4)4 crystals, J. Alloys Comp. 275-278 (1998) 214-218.
DOI: 10.1016/s0925-8388(98)00306-5
Google Scholar
[2]
B. Yan, J.-H. Wu, NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature – solid state reaction, microstructure and photoluminescence, Mater. Chem. Phys. 116 (2009) 67-71.
DOI: 10.1016/j.matchemphys.2009.02.042
Google Scholar
[3]
Zh. Xianju, Zh. Tonghui, L. Yingmao, F. Qiaochun, LiY1–xEux(MoO4)2 as a promising red-emitting phosphor of WLEDs synthesized by sol-gel process, J. Rare Earths 30 (2012) 315-319.
DOI: 10.1016/s1002-0721(12)60044-1
Google Scholar
[4]
C. Cascales, A. Mendez Blas, M. Rico, V. Volkov, C. Zaldo, The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: Relationship with the structural local disorder, Opt. Mater. 27 (2005) 1672-1680
DOI: 10.1016/j.optmat.2004.11.051
Google Scholar
[5]
A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, C. Cascales, Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+= Li, Na; X = W, Mo), Phys. Rev. B 75 (2007) 174208-1-14.
Google Scholar
[6]
S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M = Gd, Y, Bi), Chem. Phys. Lett. 387 (2004) 2-6.
DOI: 10.1016/j.cplett.2003.12.130
Google Scholar
[7]
Y. Huang, L. Zhou, L. Yang, Z. Tang, Self-assembled 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures: Hydrothermal synthesis, formation mechanism and luminescence properties, Opt. Mater. 33 (2011) 777-782.
DOI: 10.1016/j.optmat.2010.12.015
Google Scholar
[8]
W. Guo, Y. Lin, X. Gong, Y. Chen, Z. Luo, Y. Huang, Spectroscopic properties of Pr3+:KY(MoO4)2 crystal as a visible laser gain medium, J. Phys. Chem. Solids 69 (2008) 8-15.
DOI: 10.1016/j.jpcs.2007.07.085
Google Scholar
[9]
X. Li, Zh. Lin, L. Zhang, G. Wang, Growth and spectral properties of Yb3+-doped NaY(MoO4)2 crystal, Opt. Mater. 29 (2007) 728-731.
DOI: 10.1016/j.optmat.2005.11.028
Google Scholar
[10]
X. Lu, Zh. You, J. Li, Zh. Zhu, G. Jia, B. Wu, Ch. Tu, The optical properties of Dy3+-doped NaY(MoO4)2 crystal, J. Lumin. 126 (2007) 63-67.
DOI: 10.1016/j.jlumin.2006.05.003
Google Scholar
[11]
Zb. Mazurak, G. Blasse, J. Liebertz, The luminescence of the scheelite NaBi(MoO4)2, J. Solid State Chem. 68 (1987) 181-184.
DOI: 10.1016/0022-4596(87)90301-x
Google Scholar
[12]
G. Zimmerer, SUPERLUMI: A unique setup for luminescence spectroscopy with synchrotron radiation, Rad. Measur. 42 (2007) 859-864.
DOI: 10.1016/j.radmeas.2007.02.050
Google Scholar
[13]
Р. Кubelka, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Amer. 38 (1948) 448-448.
DOI: 10.1364/josa.38.000448
Google Scholar
[14]
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) ISBN 3-9501031-1-2.
Google Scholar
[15]
J. Hanuza, M. Maczka, Vibrational properties of the double molybdates MX( MoO4)2 family (M = Li, Na, K, Cs; X = Bi, Cr). Part I. Structure and infrared and Raman spectra in the polycrystalline state", Vib. Spectrosc. 7 (1994) 85-96.
DOI: 10.1016/0924-2031(94)85044-5
Google Scholar
[16]
A. Waskowska, L. Gerward, J.S. Olsen, M. Maczka, T. Lis, A. Pietraszka, W. Morgenroth, Low temperature and high pressure structural behaviour of NaBi(MoO4)2 – an X-ray diffraction study, J. Solid State Chem., vol. 178, pp.2218-2224, 2005.
DOI: 10.1016/j.jssc.2005.05.001
Google Scholar
[17]
Y. le Page, P. Strobel, Structure of lithium yttrium bismolybdate(VI), Acta Crystalogr. B 36 (1980) 1919-1920.
Google Scholar
[18]
R.F. Klevtsova, Crystal structure of NaFe(MoO4)2, Doklady Akademii Nauk SSSR 221(1975) 1322–1325.
Google Scholar
[19]
H. Ehrenberg, E. Muessig, K.G. Bramnik, Ph. Kampe, T. Hansen, Preparation and properties of sodium iron orthooxomolybdates, NaxFey(MoO4)z, Solid State Sci. 8 (2006) 813-820.
DOI: 10.1016/j.solidstatesciences.2006.03.001
Google Scholar
[20]
J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar
[21]
P.E. Blochl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 49 (1994) 16223–16233.
DOI: 10.1103/physrevb.49.16223
Google Scholar
[22]
V.V. Sobolev, V.V. Nemoshkalenko, Electronic Structure of Solids in the Region of Fundamental Absorption Edge (in Russian), Kiev: Naukova Dumka, (1992) 566.
Google Scholar
[23]
V.B. Mikhailik, H. Kraus, G. Miller, M.S. Mykhaylyk, D. Wahl, Luminescence of CaWO4, CaMoO4 and ZnWO4 scintillating crystals under different excitations", J. Appl. Phys. 97 (2005) 083523-1-8.
DOI: 10.1063/1.1872198
Google Scholar
[24]
M. Wiegel, G. Blasse, The luminescence properties of octahedral and tetrahedral molybdate complexes, J. Solid State Chem. 99 (1992) 388-394.
DOI: 10.1016/0022-4596(92)90327-r
Google Scholar
[25]
J.A. Groenink, D.G. Blasse, Some New Observations on the Luminescence of PbMoO4 and PbWO4, J. Solid State Chem. 32 (1980) 9-20.
DOI: 10.1016/0022-4596(80)90263-7
Google Scholar
[26]
D.A. Spasskii, V.N. Kolobanov, V.V. Mikhailin, L.Yu. Berezovskaya, L.I. Ivleva, I.S. Voronina, Luminescence Peculiarities and Optical Properties of MgMoO4 and MgMoO4:Yb Crystals, Opt. Spectrosc. 106 (2009) 556–563.
DOI: 10.1134/s0030400x09040171
Google Scholar
[27]
V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida, Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals, J. Phys.: Condens. Matter. 17 (2005) 7209-7218.
DOI: 10.1088/0953-8984/17/46/005
Google Scholar
[28]
D.A. Spassky, V.V. Mikhailin, A.E. Savon, E.N. Galashov, V.N. Shlegel, Ya.V. Vasiliev, Low temperature luminescence of ZnMoO4 single crystals grown by low temperature gradient Czochralski technique, Opt. Mater. 34 (2012) 1804-1810.
DOI: 10.1016/j.optmat.2012.05.007
Google Scholar
[29]
T. Eickhoff, P. Grosse, W. Theiss, Diffuse reflectance spectroscopy of powders, Vib. Spectrosc. 1 (1990) 229-233.
DOI: 10.1016/0924-2031(90)80042-3
Google Scholar
[30]
D.A. Spassky, A.N. Vasil'ev, I.A. Kamenskikh, V.V. Mikhailin, A.E. Savon, Yu.A. Hizhnyi, S.G. Nedilko, P.A. Lykov, Electronic structure and luminescence mechanisms in ZnMoO4 crystals, J. Phys.: Condens. Matter. 23 (2011) 365501-1-10.
DOI: 10.1088/0953-8984/23/36/365501
Google Scholar
[31]
Y. Zhang, N.A.W., Holtzwarth, R.T. Williams, Electronic band structures of the sheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4, Phys. Rev. B 57 (1998) 12739-12750.
Google Scholar
[32]
Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Electronic structure and optical properties of CdMoO4 and CdWO4, Phys. Rev. B 62 (2000) 1733-1741.
Google Scholar
[33]
P. Tang, N.A.W. Holzwarth, Electronic structure of FePO4, LiFePO4 and related materials, Phys. Rev. B 68 (2003) 165107-1-10.
Google Scholar
[34]
C.W.M. Timmermans, G. Blasse, The luminescence of some oxidic bismuth and lead compounds, J. Solid State Chem. 52 (1984) 222-232.
DOI: 10.1016/0022-4596(84)90005-7
Google Scholar
[35]
F. Xue, H. Li, Y. Hu, Sh. Xiong, X. Zhang, T. Wang, X. Liang, Y. Qian, Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases, J. Solid State Chem. 182 (2009) 1396–1400.
DOI: 10.1016/j.jssc.2009.02.031
Google Scholar
[36]
Y. Wang, R.K. Li, d–d Transitions of Fe3+ ions in Fe-doped K2Al2B2O7 crystal, Opt. Mater. 32 (2010) 1313-1316.
DOI: 10.1016/j.optmat.2010.04.036
Google Scholar
[37]
G.T. Pott, B.D. McNicol, The phosphorescence of Fe3+ ions in oxide host lattice. Zero-phonon transitions in Fe3+/LiAl5O8, Chem. Phys. Lett. 12 (1971) 62-64.
DOI: 10.1016/0009-2614(71)80617-6
Google Scholar
[38]
D. Spassky, A. Vasil'ev, I. Kamenskikh, V. Kolobanov, V. Mikhailin, A. Savon, L. Ivleva, I. Voronina, L. Berezovskaya, Luminescence investigation of zinc molybdate single crystals, Phys. Status Solidi(a) 206 (2009) 1579-1583.
DOI: 10.1002/pssa.200824311
Google Scholar