Electronic Structure and Luminescence Spectroscopy of M'Bi(MoO4)2 (M' = Li, Na, K), LiY(MoO4)2 and NaFe(MoO4)2 Molybdates

Article Preview

Abstract:

The mechanisms of intrinsic luminescence in the set of molybdate crystals of MIMIII(MoO4)2 (MI = Li, Na, K; MIII =Bi, Y, Fe) type are revealed in complex experimental and theoretical studies. The luminescence spectroscopy under vacuum ultraviolet (VUV) synchrotron excitations is applied together with the electronic structure calculations carried out by the FLAPW method. The energy gaps (Eg) values of the crystals are determined in simultaneous analysis of diffuse reflectance and luminescence excitation spectra. It is found that the molybdate groups MoO42- play a dominant role in the processes of intrinsic luminescence in studied molybdate compounds

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

114-122

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Voda, R. Balda, I. Sáez de Ocáriz, L.M. Lacha, M.A. Illarramendi, J. Fernández, Spectroscopic properties of rare earths in K5Bi1−x(RE)x(MoO4)4 crystals, J. Alloys Comp. 275-278 (1998) 214-218.

DOI: 10.1016/s0925-8388(98)00306-5

Google Scholar

[2] B. Yan, J.-H. Wu, NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature – solid state reaction, microstructure and photoluminescence, Mater. Chem. Phys. 116 (2009) 67-71.

DOI: 10.1016/j.matchemphys.2009.02.042

Google Scholar

[3] Zh. Xianju, Zh. Tonghui, L. Yingmao, F. Qiaochun, LiY1–xEux(MoO4)2 as a promising red-emitting phosphor of WLEDs synthesized by sol-gel process, J. Rare Earths 30 (2012) 315-319.

DOI: 10.1016/s1002-0721(12)60044-1

Google Scholar

[4] C. Cascales, A. Mendez Blas, M. Rico, V. Volkov, C. Zaldo, The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: Relationship with the structural local disorder, Opt. Mater. 27 (2005) 1672-1680

DOI: 10.1016/j.optmat.2004.11.051

Google Scholar

[5] A. Méndez-Blas, M. Rico, V. Volkov, C. Zaldo, C. Cascales, Crystal field analysis and emission cross sections of Ho3+ in the locally disordered single-crystal laser hosts M+Bi(XO4)2 (M+= Li, Na; X = W, Mo), Phys. Rev. B 75 (2007) 174208-1-14.

Google Scholar

[6] S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2-x(MoO4)x:Eu3+ (M = Gd, Y, Bi), Chem. Phys. Lett. 387 (2004) 2-6.

DOI: 10.1016/j.cplett.2003.12.130

Google Scholar

[7] Y. Huang, L. Zhou, L. Yang, Z. Tang, Self-assembled 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures: Hydrothermal synthesis, formation mechanism and luminescence properties, Opt. Mater. 33 (2011) 777-782.

DOI: 10.1016/j.optmat.2010.12.015

Google Scholar

[8] W. Guo, Y. Lin, X. Gong, Y. Chen, Z. Luo, Y. Huang, Spectroscopic properties of Pr3+:KY(MoO4)2 crystal as a visible laser gain medium, J. Phys. Chem. Solids 69 (2008) 8-15.

DOI: 10.1016/j.jpcs.2007.07.085

Google Scholar

[9] X. Li, Zh. Lin, L. Zhang, G. Wang, Growth and spectral properties of Yb3+-doped NaY(MoO4)2 crystal, Opt. Mater. 29 (2007) 728-731.

DOI: 10.1016/j.optmat.2005.11.028

Google Scholar

[10] X. Lu, Zh. You, J. Li, Zh. Zhu, G. Jia, B. Wu, Ch. Tu, The optical properties of Dy3+-doped NaY(MoO4)2 crystal, J. Lumin. 126 (2007) 63-67.

DOI: 10.1016/j.jlumin.2006.05.003

Google Scholar

[11] Zb. Mazurak, G. Blasse, J. Liebertz, The luminescence of the scheelite NaBi(MoO4)2, J. Solid State Chem. 68 (1987) 181-184.

DOI: 10.1016/0022-4596(87)90301-x

Google Scholar

[12] G. Zimmerer, SUPERLUMI: A unique setup for luminescence spectroscopy with synchrotron radiation, Rad. Measur. 42 (2007) 859-864.

DOI: 10.1016/j.radmeas.2007.02.050

Google Scholar

[13] Р. Кubelka, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Amer. 38 (1948) 448-448.

DOI: 10.1364/josa.38.000448

Google Scholar

[14] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001) ISBN 3-9501031-1-2.

Google Scholar

[15] J. Hanuza, M. Maczka, Vibrational properties of the double molybdates MX( MoO4)2 family (M = Li, Na, K, Cs; X = Bi, Cr). Part I. Structure and infrared and Raman spectra in the polycrystalline state", Vib. Spectrosc. 7 (1994) 85-96.

DOI: 10.1016/0924-2031(94)85044-5

Google Scholar

[16] A. Waskowska, L. Gerward, J.S. Olsen, M. Maczka, T. Lis, A. Pietraszka, W. Morgenroth, Low temperature and high pressure structural behaviour of NaBi(MoO4)2 – an X-ray diffraction study, J. Solid State Chem., vol. 178, pp.2218-2224, 2005.

DOI: 10.1016/j.jssc.2005.05.001

Google Scholar

[17] Y. le Page, P. Strobel, Structure of lithium yttrium bismolybdate(VI), Acta Crystalogr. B 36 (1980) 1919-1920.

Google Scholar

[18] R.F. Klevtsova, Crystal structure of NaFe(MoO4)2, Doklady Akademii Nauk SSSR 221(1975) 1322–1325.

Google Scholar

[19] H. Ehrenberg, E. Muessig, K.G. Bramnik, Ph. Kampe, T. Hansen, Preparation and properties of sodium iron orthooxomolybdates, NaxFey(MoO4)z, Solid State Sci. 8 (2006) 813-820.

DOI: 10.1016/j.solidstatesciences.2006.03.001

Google Scholar

[20] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron­gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[21] P.E. Blochl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 49 (1994) 16223–16233.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[22] V.V. Sobolev, V.V. Nemoshkalenko, Electronic Structure of Solids in the Region of Fundamental Absorption Edge (in Russian), Kiev: Naukova Dumka, (1992) 566.

Google Scholar

[23] V.B. Mikhailik, H. Kraus, G. Miller, M.S. Mykhaylyk, D. Wahl, Luminescence of CaWO4, CaMoO4 and ZnWO4 scintillating crystals under different excitations", J. Appl. Phys. 97 (2005) 083523-1-8.

DOI: 10.1063/1.1872198

Google Scholar

[24] M. Wiegel, G. Blasse, The luminescence properties of octahedral and tetrahedral molybdate complexes, J. Solid State Chem. 99 (1992) 388-394.

DOI: 10.1016/0022-4596(92)90327-r

Google Scholar

[25] J.A. Groenink, D.G. Blasse, Some New Observations on the Luminescence of PbMoO4 and PbWO4, J. Solid State Chem. 32 (1980) 9-20.

DOI: 10.1016/0022-4596(80)90263-7

Google Scholar

[26] D.A. Spasskii, V.N. Kolobanov, V.V. Mikhailin, L.Yu. Berezovskaya, L.I. Ivleva, I.S. Voronina, Luminescence Peculiarities and Optical Properties of MgMoO4 and MgMoO4:Yb Crystals, Opt. Spectrosc. 106 (2009) 556–563.

DOI: 10.1134/s0030400x09040171

Google Scholar

[27] V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida, Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals, J. Phys.: Condens. Matter. 17 (2005) 7209-7218.

DOI: 10.1088/0953-8984/17/46/005

Google Scholar

[28] D.A. Spassky, V.V. Mikhailin, A.E. Savon, E.N. Galashov, V.N. Shlegel, Ya.V. Vasiliev, Low temperature luminescence of ZnMoO4 single crystals grown by low temperature gradient Czochralski technique, Opt. Mater. 34 (2012) 1804-1810.

DOI: 10.1016/j.optmat.2012.05.007

Google Scholar

[29] T. Eickhoff, P. Grosse, W. Theiss, Diffuse reflectance spectroscopy of powders, Vib. Spectrosc. 1 (1990) 229-233.

DOI: 10.1016/0924-2031(90)80042-3

Google Scholar

[30] D.A. Spassky, A.N. Vasil'ev, I.A. Kamenskikh, V.V. Mikhailin, A.E. Savon, Yu.A. Hizhnyi, S.G. Nedilko, P.A. Lykov, Electronic structure and luminescence mechanisms in ZnMoO4 crystals, J. Phys.: Condens. Matter. 23 (2011) 365501-1-10.

DOI: 10.1088/0953-8984/23/36/365501

Google Scholar

[31] Y. Zhang, N.A.W., Holtzwarth, R.T. Williams, Electronic band structures of the sheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4, Phys. Rev. B 57 (1998) 12739-12750.

Google Scholar

[32] Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Electronic structure and optical properties of CdMoO4 and CdWO4, Phys. Rev. B 62 (2000) 1733-1741.

Google Scholar

[33] P. Tang, N.A.W. Holzwarth, Electronic structure of FePO4, LiFePO4 and related materials, Phys. Rev. B 68 (2003) 165107-1-10.

Google Scholar

[34] C.W.M. Timmermans, G. Blasse, The luminescence of some oxidic bismuth and lead compounds, J. Solid State Chem. 52 (1984) 222-232.

DOI: 10.1016/0022-4596(84)90005-7

Google Scholar

[35] F. Xue, H. Li, Y. Hu, Sh. Xiong, X. Zhang, T. Wang, X. Liang, Y. Qian, Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases, J. Solid State Chem. 182 (2009) 1396–1400.

DOI: 10.1016/j.jssc.2009.02.031

Google Scholar

[36] Y. Wang, R.K. Li, d–d Transitions of Fe3+ ions in Fe-doped K2Al2B2O7 crystal, Opt. Mater. 32 (2010) 1313-1316.

DOI: 10.1016/j.optmat.2010.04.036

Google Scholar

[37] G.T. Pott, B.D. McNicol, The phosphorescence of Fe3+ ions in oxide host lattice. Zero-phonon transitions in Fe3+/LiAl5O8, Chem. Phys. Lett. 12 (1971) 62-64.

DOI: 10.1016/0009-2614(71)80617-6

Google Scholar

[38] D. Spassky, A. Vasil'ev, I. Kamenskikh, V. Kolobanov, V. Mikhailin, A. Savon, L. Ivleva, I. Voronina, L. Berezovskaya, Luminescence investigation of zinc molybdate single crystals, Phys. Status Solidi(a) 206 (2009) 1579-1583.

DOI: 10.1002/pssa.200824311

Google Scholar