The Peculiarities of the Electrical Conductivity of LiNbO3 Crystals, Reduced in Hydrogen

Article Preview

Abstract:

The low-frequency impedance spectroscopy method has been used to investigate the electrical conductivity peculiarities of lithium niobate (LN) crystals reduced in hydrogen. It has been found that the activation energy value of the dark electrical conductivity of such crystals in a temperature range of 288...370 К is equal to 0.68±0.02 eV. It has been demonstrated that the multiple heating of «black» LN crystals up to a temperature of about 420 K results in surface layers with modified electrical properties to occur in the crystal’s polar faces. The electrical conductivity mechanism of LiNbO3 crystals reduced in the hydrogen-containing atmosphere, and the causes of the instability of these properties are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

193-198

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.G. Belabaev, V.B. Markov, S.G. Odoulov, Photovoltaic effect in reduced crystals of lithium niobate, Ukr. J. Phys. 24 (1979) 366-371.

Google Scholar

[2] P.F. Bordui, D.H. Jundt, E.M. Standifer, R.G. Norwood, R.L. Sawin, J.D. Galipeau, Chemically reduced lithium niobate single crystals: processing, properties and improved surface acoustic wave device fabrication and performance, J. Appl. Phys. 85 (1999) 3766-3769.

DOI: 10.1063/1.369775

Google Scholar

[3] B.K. Brickeen, C. Shanta, Reducing the pyroelectric effect in lithium niobates Q-switch crystals, Opt. Eng. 49 (2010) 124201.

DOI: 10.1117/1.3520053

Google Scholar

[4] D.Yu. Sugak, I.M. Solskii, I.I. Syvorotka, M.M. Vakiv, Influence of thermochemical treatment on the optical properties of the lithium niobate single crystals, New Technologies 1 (2012) 3-12.

Google Scholar

[5] T.R. Volk, M. Wöhlecke. Lithium niobate. Defects, photorefraction and ferroelectric switching, Springer-Verlag, Berlin, Heidelberg, 2008.

DOI: 10.1007/978-3-540-70766-0

Google Scholar

[6] A. Dhar, A. Mansingh, Optical properties of reduced lithium niobate single crystals, J. Appl. Phys. 68 (1990) 5804-5809.

DOI: 10.1063/1.346951

Google Scholar

[7] S. Bredikhin, S. Scharner, M. Klingler, V. Kveder, B. Red'kin, W. Weppner, Nonstoichiometry and electrocoloration due to injection of Li+ and O2- ions into lithium niobate, J. Appl. Phys. 88 (2000) 5687-5694.

DOI: 10.1063/1.1318367

Google Scholar

[8] A.V. Yatsenko, S.V. Yevdokimov, A.S. Pritulenko, D.Yu. Sugak, I.M. Solskii, Electrical properties of LiNbO3 crystals reduced in a hydrogen atmosphere, Physics of the Solid State 54 (2012) 2231-2235.

DOI: 10.1134/s1063783412110339

Google Scholar

[9] I.M. Solskii, D.Yu. Sugak, V.M. Gaba, The obtaining of optical grade and large dimensions lithium niobate single crystals, Tekhnologiya i Konstruirovanie v Elektronnoj Apparature 5 (2005) 51-54.

Google Scholar

[10] A. Mansingh, A. Dhar, The ac conductivity and dielectric constant of lithium niobate single crystals, J. Phys. D: Appl. Phys.18 (1985) 2059-2071.

DOI: 10.1088/0022-3727/18/10/016

Google Scholar

[11] J. Liu, E. Kharitonova, C. Duan, W. Mei, R. Smith, J. Hardy, Phase transition in single crystal Cs2Nb4O11, J. Chem. Phys. 123 (2005) 144503.

DOI: 10.1063/1.1883143

Google Scholar

[12] M.A.L. Nobre, S. Lanfredi, Dielectric loss and phase transition of sodium potassium niobates ceramic investigated by impedance spectroscopy, Catalysis Today 78 (2003) 529-538.

DOI: 10.1016/s0920-5861(02)00349-8

Google Scholar

[13] O.F. Shirmer M. Imlau., C.Merschjann, B. Schoke, Electron small polarons and bipolarons in LiNbO3, J. Phys.: Condens. Matter 21 (2009) 123201.

DOI: 10.1088/0953-8984/21/12/123201

Google Scholar

[14] D. Sugak, Ya. Zhydachevskii, Yu. Sugak, O. Buryy, S. Ubizskii, I. Solskii, M. Schrader, K.-D. Becker, In-situ investigation of optical absorption changes in LiNbO3 during reducing/oxidizing high-temperature treatments, J. Phys.: Cond. Matter 19 (2007) 086211.

DOI: 10.1088/0953-8984/19/8/086211

Google Scholar