Infrared Spectroscopy Studies of Magnesium Aluminates Spinel Crystals

Article Preview

Abstract:

The reflectance and transmittance spectra for magnesium aluminates spinel single crystals MgO•nAl2O3 and ceramics in the IR spectral range were measured to investigate the nature of vibration modes of constituent ions and incorporated hydrogen. Besides of the earlier observed bands at 545, 710, and 835 cm-1 we registered also two bands 1440 and 1670 cm-1 in single crystals grown by different methods and in spinel optical ceramics. The existence of these bands was supported by measurements of non-stoichiometric spinel crystals and crystals doped with transition metals. The variation of intensity of registered bands in spinel of stoichiometric and non-stoichiometric compositions and spinel ceramics was interpreted in terms of vibration modes of divalent and trivalent cations in different coordination, particularky, at the spatially correlated anti-site defects.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

209-214

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.E. Striefler, S.I. Boldish, Transverse and longitudinal optic frequencies of spinel MgAl2O4, J. Phys. C: Solid State Phys. 11 (1978) L237-241.

DOI: 10.1088/0022-3719/11/7/002

Google Scholar

[2] M. Ishi, J. Hiraishi, T. Yamanaka, Structure and lattice vibrations of Mg-Al spinel solid solutions, Phys. Chem. Minerals 8 (1982) 64-68.

DOI: 10.1007/bf00309015

Google Scholar

[3] P. Thibaudeau, F. Gervais, Ab initio investigation of phonon models in the MgAl2O4 spinel, J. Phys.: Condens. Matter 14 (2002) 3543-3552.

DOI: 10.1088/0953-8984/14/13/312

Google Scholar

[4] Q. Zeng, L. Zhang, Xian Zhang, Q. Chen, Z. Feng, Y. Cai, L. Cheng, Z. Weng, Vibrational and dielectric properties of magnesium aluminate spinel: A first-principles study, Phys. Lett. A 375 (2011) 3521-3524.

DOI: 10.1016/j.physleta.2011.08.020

Google Scholar

[5] D. Fabian, Th. Posch, H. Mutschke, F. Kerschbaum, J. Dorschner, Infrared optical properties of spinels, A&A 373 (2001) 1125-1138.

DOI: 10.1051/0004-6361:20010657

Google Scholar

[6] X. Duan, D. Yuan, C. Luan, Z. Sun, D. Xu, M. Lv, Microstructural evolution of transparent glass-ceramics containing Co2+: MgAl2O4 nanocrystals, J. Non-Cryst. Solids 328 (2003) 245-249.

DOI: 10.1016/j.jnoncrysol.2003.08.045

Google Scholar

[7] S. Kurien, S. Sebastian, J. Mathew, K.C. George, Structural and electrical properties of nano-sized magnesium aluminate, Indian J. Pure & Appl. Phys. 42 (2004) 926-933.

Google Scholar

[8] V.T. Gritsyna, I.V. Afanasyev-Charkin, Yu.G. Kazarinov, K.E. Sickafus, Optical transitions in magnesium aluminates spinel crystals of different compositions exposed to irradiation. Nucl. Instr. Methods B218 (2004) 264-270.

DOI: 10.1016/j.nimb.2004.02.002

Google Scholar

[9] V.T. Gritsyna, Yu.G. Kazarinov, V.A. Kobyakov, I.E. Reimanis, Radiation induced luminescence in magnesium aluminates spinel crystals of different origin. Nucl. Instr. Methods B250 (2006) 349-353.

DOI: 10.1016/j.nimb.2006.04.135

Google Scholar

[10] N.Fukatsu, N. Kurita, H. Shiga, Y. Murai, T. Ohashi, Incorporation of hydrogen into magnesium aluminate spinel, Solid State Ionics 152-153 (2002) 809-812.

DOI: 10.1016/s0167-2738(02)00332-6

Google Scholar

[11] Y. Oruyama, N. Kurita, N. Fukatsu, Defect structure of alumina-rich nonstoichiometric magnesium aluminate spinel, Solid State Ionics 177 (2006) 59-64.

DOI: 10.1016/j.ssi.2005.09.013

Google Scholar

[12] A. Benerjee, S. Das, S. Misra, S. Mukhopadhyay, Structural analysis on spinel (MgAl2O4) for application in spinel bonded castables, Ceram. Int. 35 (2009) 381-390.

DOI: 10.1016/j.ceramint.2007.11.009

Google Scholar