Lithium Ion Conductors Based on System (Li,Na,La){Ti,Nb,Та}O with Perovskite Structure

Article Preview

Abstract:

Solid solutions with defect perovskite structure have been obtained in the systems Li0,5-уNayLa0,5TiO3, Li0.5-yNayLa0.5◊Nb2O6 and Li0.5-yNayLa0.5◊Та2O6 at 0 ≤ y ≤ 0.5. Their structure has been shown to undergo partial disordering with increasing sodium content in the system Li0.5-yNayLa0.5◊Nb2O6 as in the system Li0.5-yNayLa0.5◊Та2O6 structure has been ordering. Lithium diffusion in system Li0,5-уNayLa0,5TiO3 follows a percolation model for the lithium diffusion. The ionic conductivity as a function of sodium content in the system Li0.5-yNayLa0.5◊Nb2O6 has a maximum. The ionic conductivity of Li0.5-yNayLa0.5◊Ta2O6 samples decreases with sodium content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

279-285

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Belous, V.I. Butko, G.N. Novitskaya, et al., Electrical Conductivity of La2/3-xМ3xTiO3 Perovskites, Ukr. Fiz. Zh. (Russ. Ed. ) 31 (1986) 576-581.

Google Scholar

[2] A.G. Belous, Properties of Heterosubstituted Titanates with Perovskite Structure, 3rd Euro Ceramics 2 (1993) 341-346.

Google Scholar

[3] J. Ibarra, A. Varez, C. Leon, et al., Influence of Composition on the Structure and Conductivity of the Fast Ionic Conductors La2/3-xLi3xTiO3 (0. 03 ≤ x ≤ 0. 167), Solid State Ionics 134 (2000) 219-228.

DOI: 10.1016/s0167-2738(00)00761-x

Google Scholar

[4] O. N. Gavrilenko, A. G. Belous, L. L. Kovalenko, Ye.V. Pashkova, Effect of the A-site substitution on the structure peculiarities and ionic conductivity of solid electrolytes La2/3-x-yLi3x-ySr2y4/3-2xNb2O6. Mater. Manuf. Process 23 (2008) 607-610.

Google Scholar

[5] A.G. Belous, E.B. Novosadova, I.R. Diduh et al., Formation of cationic conductivity in complex niobium containing materials with defect perovskite structure, Ionic melts and electrolytes (Russ. Ed. ) 4 (1986) 68-73.

Google Scholar

[6] O. Bohnke, The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application, Solid State Ionics 179 (2008) 9-15.

DOI: 10.1016/j.ssi.2007.12.022

Google Scholar

[7] A. Belous, E. Pashkova, O. Gavrilenko et al., Solid electrolytes based on lithium-containing lanthanum metaniobates, J. Eur. Ceram. Soc. 24 (2004) 1301-1304.

DOI: 10.1016/s0955-2219(03)00501-6

Google Scholar

[8] A. Belous, E. Pashkova, O. Gavrilenko et al., Lithium ion-conducting materials based on complex metaniobates and metatantalates La2/3-xLi3x�4/3-2x[Nb]Ta2O6 with defect-perovskite structure, Ionics 9 (2003) 21-27.

DOI: 10.1007/bf02376532

Google Scholar

[9] O.N. Gavrilenko, A.G. Belous, E.V. Pashkova and V.N. Mirnyi, Structural and Transport Properties of La2/3-xLi3x□4/3-2xTa2O6 Perovskite-Like Solid Solutions, Inorg. Mater. 38 (2002) 949-953.

DOI: 10.1023/a:1020006728350

Google Scholar

[10] M. Itoh, Y. Inaguma, W. Jung et al., High lithium ion conductivity in the perovskite-type compounds Ln1/2Lil/2TiO3, (Ln = La, Pr, Nd, Sm), Solis State Ionics 70/71 (1995) 203-207.

DOI: 10.1016/0167-2738(94)90310-7

Google Scholar

[11] A. Rivera, C. Leon, J. Santamaria, et al., Percolation-Limited Ionic Diffusion in Li0. 5-xNaxLa0. 5TiO3 Perovskites (0 ≤ x ≤ 0. 5), Chem. Mater. 14 (2002) 5148-5152.

Google Scholar

[12] M. Sanjuan, M. Laguna, A. Belous, and O. V'yunov, On the Local Structure and Lithium Dynamics of La0. 5(Li, Na)0. 5TiO3 Ionic Conductors. A Raman Study, Chem. Mater. 17 (2005) 5862-5866.

DOI: 10.1021/cm0517770

Google Scholar

[13] J. Sanz, A. Rivera, C. Leόn et al., Li mobility in La0. 66-y/3(Li, Na)yTiO3 (0. 09 ≤ x ≤ 0. 5). A modes system fr the percolation theory, Mater. Res. Soc. Publications 756 (2003) EE2. 31 - EE2. 36.

Google Scholar

[14] A.G. Belous, O.N. Gavrilenko, E.V. Pashkova, and V.N. Mirnyi, Lithium Ion Conductivity and Crystal-Chemical Aspects of La2/3-xLi3x□4/3-2xNb2O6 Defect Perovskite Solid Solutions, Elektrokhimiya 38 (2002) 479-484.

Google Scholar

[15] C.P. Herrero, A. Varez, A. Rivera et al., Influence of Vacancy Ordering on the Percolative Behavior of (Li1-xNax)3yLa2/3-yTiO3 Perovskites, J. Phys. Chem. B 109 (2005) 3262-3268.

Google Scholar

[16] R. Jimenez, A. Varez, J. Sanz, Influence of octahedral tilting and composition on electrical properties of the Li0. 2−xNaxLa0. 6TiO3 (0 ≤ x ≤ 0. 2) series, Solid State Ionics 179 (2008) 495502.

DOI: 10.1016/j.ssi.2008.03.015

Google Scholar

[17] J. Ibarra, A. Varez, C. Leon et al., Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-x Li3xTiO3 (0. 03 ≤ x ≤ 0. 167), Solid State Ionics 134 (2000) 219-228.

DOI: 10.1016/s0167-2738(00)00761-x

Google Scholar

[18] A. Rivera, C. Leon, J. Santamarıa et al., Li3xLa2/3-xTiO3 fast ionic conductors. Correlation between lithium mobility and structure, J. Non-Cryst. Solids 307-310 (2002) 992-998.

DOI: 10.1016/s0022-3093(02)01564-8

Google Scholar

[19] V.B. Nalbandyan, and I.A. Shukaev, Novel tantalate and niobate, Zh. Neorg. Khim. (Russ. Ed. ) 34 (1989) 793-795.

Google Scholar

[20] R. HJimenezH, A. HRivera , A. HVarez H, and J. Sanz, Li mobility in Li0. 5−xNaxLa0. 5TiO3 perovskites (0 ≤ x ≤ 0. 5). Influence of structural and compositional parameters, HSolid State IonicsH. 180 (2009) 1362-1371.

Google Scholar