[1]
J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sens. Actuat. B140 (2009) 319-336.
Google Scholar
[2]
B.-L. Su, Hierarchically Structured Porous Materials for Energy Conversion and Storage in: B.-L. Su, C. Sanchez, X.-Y. Yang (Eds.), Hierarchically Structured Porous Materials, Wiley-VCH., Weinheim, 2011, pp.577-597.
DOI: 10.1002/9783527639588.ch19
Google Scholar
[3]
S.J. Fang, W. Chen, T. Yamanaka, C.R. Helms, Comparison of Si surface roughness measured by atomic force microscopy and ellipsometry, Appl. Phys. Lett. 68 (1996) 2837-2839.
DOI: 10.1063/1.116341
Google Scholar
[4]
J.D. Kiely, D.A. Bonnell, Quantification of topographic structure by scanning probe microscopy, J. Vac. Sci. Technol. B15 (1997) 1483-1493.
DOI: 10.1116/1.589480
Google Scholar
[5]
T. Vicsek, Fractal Growth Phenomena, 2nd. Edition, World Scientific, Singapore, 1992.
Google Scholar
[6]
C. Douketis, Z. Wang, T.L. Haslett., M. Moskovits, Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy, Phys. Rev. B51 (1995) 11022-11031.
DOI: 10.1103/physrevb.51.11022
Google Scholar
[7]
A. Provata, P. Falaras, A. Xagas, Fractal features of titanium oxide surfaces, Chem. Phys. Lett. 297 (1998) 484-490.
DOI: 10.1016/s0009-2614(98)01127-0
Google Scholar
[8]
E.L. Church, P.Z. Takacz, The optimal estimation of finish parameters, Proc. SPIE 1530 (1991) 71-85.
Google Scholar
[9]
J.G. Buijnsters, M. Camero, L. Vázquez, Growth dynamics of ultrasmooth hydrogenated amorphous carbon films, Phys. Rev. B74 (2006) 155417.
DOI: 10.1103/physrevb.74.155417
Google Scholar
[10]
D. Rönnow, J. Isidorsson, G.A. Niklasson, Surface roughness of sputtered ZrO2 films studied by atomic force microscopy and spectroscopic light scattering, Phys. Rev. E54 (1996) 4021-4026.
DOI: 10.1103/physreve.54.4021
Google Scholar
[11]
W. Nernst, Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen, Z. Elektrochem. 6 (1899) 41-43.
DOI: 10.1002/bbpc.18990060205
Google Scholar
[12]
E. Baur, H. Preis, Über Brennstoff-Ketten mit Festleitern, Z. Elektrochem. 43 (1937) 727-732.
Google Scholar
[13]
J.A. Kilner, R.J. Brook, A study of oxygen ion conductivity in doped nonstoichiometric oxides, Solid State Ionics 6 (1982) 237-252.
DOI: 10.1016/0167-2738(82)90045-5
Google Scholar
[14]
D.-S. Lee, W.S. Kim, S.H. Choi, J. Kim, H.-W. Lee, J.-H. Lee, Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics 176 (2005) 33-39.
DOI: 10.1016/j.ssi.2004.07.013
Google Scholar
[15]
Information on http://gwyddion.net.
Google Scholar
[16]
T. Itoh, N. Yamauchi, Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms, Appl. Surf. Sci. 253 (2007) 6196-6202.
DOI: 10.1016/j.apsusc.2007.01.056
Google Scholar
[17]
E. Marx, I.J. Malik, Y.E. Strausser, T. Bristow, N. Poduje, J.C. Stover, Power spectral densities: A multiple technique study of different Si wafer substrates, J. Vac. Sci. Technol. B20 (2002) 31-41.
DOI: 10.1116/1.1428267
Google Scholar
[18]
B.J. Ferré-Borrull, A. Duparré; E. Quesnel, Procedure to characterize microroughness of optical thin films: application to ion-beam-sputtered vacuum-ultraviolet coatings, Appl. Opt. 40 (2001) 2190-2199.
DOI: 10.1364/ao.40.002190
Google Scholar
[19]
S.J. Fang, S. Haplepete, W. Chen, C.R. Helms, Analyzing atomic force microscopy images using spectral methods, J. Appl. Phys. 82 (1997) 5891-5898.
DOI: 10.1063/1.366489
Google Scholar
[20]
G. Rasigni, F. Varnier, M. Rasigni, J.P. Palmari, Roughness spectrum and surface plasmons for surfaces of silver, copper, gold, and magnesium deposits, Phys. Rev. B27 (1983) 819-830.
DOI: 10.1103/physrevb.27.819
Google Scholar