Are the Temperature Sensors Based on Chalcogenide Glass Possible?

Article Preview

Abstract:

Principal possibility of the using of chalcogenide glasses (on the example of Ge18As18Se64) as active media for temperature sensors is considered in this work. Differential scanning calorimetry testing of the investigated glasses shown that 2 years of natural storage does not lead to the drift of their DSC-parameters (glass transition temperature and endothermic peak area). Investigation of the temperature dependence of optical transmission spectra shows the linear character of optical band-gap changes with a temperature. Temperature sensitivity index β for Ge18As18Se64 is estimated to be equal to the ~1.2·10-3 eV/°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

316-320

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel and J. Lucas, Glasses for seeing beyond visible, Chem. Eur. J. 14 (2008) 432–442.

DOI: 10.1002/chem.200700993

Google Scholar

[2] J.S. Sanghera and I.D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review, J. Non-Cryst. Solids 256-257 (1999) 6–16.

DOI: 10.1016/s0022-3093(99)00484-6

Google Scholar

[3] R. Golovchak, A. Kozdras and O. Shpotyuk, Optical signature of structural relaxation in glassy As10Se90, J. Non-Cryst. Sol. 356 (2010) 1149–1152.

DOI: 10.1016/j.jnoncrysol.2010.04.008

Google Scholar

[4] H. Ticha, L. Tichy, P. Nagels, E. Sleeckx and R. Callaerts, Temperature dependence of the optical gap in thin amorphous films of As2S3, As2Se3 and other basic non-crystalline chalcogenides, J. Phys. Chem. Solids 61 (2000) 545–550.

DOI: 10.1016/s0022-3697(99)00249-8

Google Scholar

[5] Y. Wang, P. Boolchand and M. Micoulaut, Glass structure, rigidity transitions and the intermediate phase in the Ge-As-Se ternary, Europhys. Letters 52 (2000) 633–639.

DOI: 10.1209/epl/i2000-00485-9

Google Scholar

[6] M.F. Thorpe, Continuous deformations in random networks, J. Non-Cryst. Solids 57 (1983) 355–370.

DOI: 10.1016/0022-3093(83)90424-6

Google Scholar

[7] D.G. Georgiev, P. Boolchand and M. Micoulaut, Rigidity transitions and molecular structure of AsxSe1-x glasses, Phys. Rev. B 62 (2000) R9228–R9231.

Google Scholar

[8] P. Boolchand, X. Feng and W.J. Bresser, Rigidity transitions in binary Ge-Se glasses and the intermediate phase, J. Non-Cryst. Sol. 293-295 (2001) 348–356.

DOI: 10.1016/s0022-3093(01)00867-5

Google Scholar

[9] R. Golovchak, H. Jain, O. Shpotyuk, A. Kozdras, A. Saiter and J.-M. Saiter, Experimental verification of the reversibility window concept in binary As-Se glasses subjected to a long-term physical aging, Phys. Rev. B 78 (2008) 014202-1–6.

DOI: 10.1103/physrevb.78.014202

Google Scholar

[10] R. Golovchak, A. Kozdras, O. Shpotyuk, S. Kozyukhin and J.-M. Saiter, Long-term ageing behaviour in Ge–Se glasses, J. Mater. Sci. 44 (2009) 3962–3967.

DOI: 10.1007/s10853-009-3540-6

Google Scholar

[11] R. Golovchak, A. Kozdras and O. Shpotyuk, On the reversibility window in binary As–Se glasses, Phys. Letters A 370 (2007) 504–508.

DOI: 10.1016/j.physleta.2007.05.093

Google Scholar

[12] A. Ganjoo and R. Golovchak, Computer program PARAV for calculating optical constants of thin films and bulk materials: Case study of amorphous semiconductors, J. Optoelectr. Adv. Mater. 10 (2008) 1328–1332.

Google Scholar

[13] E. Le Bourhis, P. Gadaud, J.-P. Guin, N. Tournerie, X.H. Zhang, J. Lucas and T. Rouxel, Temperature dependence of the mechanical behaviour of GeAsSe glass Scripta Mater. 45 (2001) 317–323.

DOI: 10.1016/s1359-6462(01)01034-x

Google Scholar