Nanostructured and Modulated Low-Dimensional Systems

Article Preview

Abstract:

Charge density wave (CDW) ordering in NbSe3 and the structurally related quasi one-dimensional compounds is reconsidered. Since the modulated ground state is characterized by unstable nano-domains, the structural information obtained from diffraction experiments is to be supplemented by some additional information from a method, able to reveal details on a unit cell level. Low-temperature (LT) scanning tunneling microscopy (STM) can resolve both, the local atomic structure and the superimposed charge density modulation. It is shown that the established model for NbSe3 with two incommensurate (IC) modes, q1 = (0,0.241,0) and q2 = (0.5,0.260,0.5), locked in at T1=144K and T2=59K and separately confined to two of the three available types of bi-capped trigonal prismatic (BCTP) columns, must be modified. The alternative explanation is based on the existence of modulated layered nano-domains and is in good accord with the available LT STM results. These confirm i.a. the presence of both IC modes above the lower CDW transition temperature. Two BCTP columns, belonging to a symmetry-related pair, are as a rule alternatively modulated by the two modes. Such pairs of columns are ordered into unstable layered nano-domains, whose q1 and q2 sub-layers are easily interchanged. The mutually interchangeable sections of the two unstable IC modes keep a temperature dependent long-range ordering. Both modes can formally be replaced by a single highly inharmonic long-period commensurate CDW.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

42-47

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Peierls: Ann. Phys. Vol. 4 (1930), p.121.

Google Scholar

[2] R. E. Thorne: Physics Today May (1996), p.42.

Google Scholar

[3] A. H. Thompson, A. Zettl, G. Grüner: Phys. Rev. Lett. Vol. 47 (1981), p.64.

Google Scholar

[4] A. Zettl, C. M. Jackson, A. Janossy, G. Grüner, A. Jacobsen, A. H. Thompson: Sol. St. Comm. Vol. 43 (1982), p.345.

Google Scholar

[5] Z. Z. Wang, M. C. Saint-Lager, P. Monceau, M. Renard, P. Gressier, A. Meerschaut, L. Guemas, J. Rouxel: Sol. St. Comm. Vol. 46 (1983), p.325.

DOI: 10.1016/0038-1098(83)90662-2

Google Scholar

[6] Z. Z. Wang, P. Monceau, M. Renard, P. Gressier, L. Guemas, A. Meerschaut: Sol. St. Comm. Vol. 47 (1983), p.439.

Google Scholar

[7] J. Dumas, C. Schlenker, J. Marcus, R. Buder: Phys. Rev. Lett. Vol. 50 (1983), p.757.

Google Scholar

[8] J. P. Pouget, S. Kagoshima, C. Schlenker, J. Marcus: J. Phys. (Paris) Lett. Vol. 44 (1983), p.113.

Google Scholar

[9] M. Ganne, A. Boumaza, M. Dion, J. Dumas: Mat. Res. Bull. Vol. 20 (1985), p.1297.

Google Scholar

[10] B. T. Collins, K. V. Ramanujachary, M. Greenblat: Sol. St. Comm. Vol. 56 (1985), p.1023.

Google Scholar

[11] J. L. Hodeau, M. Marezio, C. Roncan, R. Ayroles, A. Meerschaut, J. Rouxel, P. Monceau: J. Phys. C: Solid State Phys. Vol. 11 (1978), p.4117.

DOI: 10.1088/0022-3719/11/20/009

Google Scholar

[12] J. A. Wilson: Phys. Rev. B Vol. 19 (1979), p.6456.

Google Scholar

[13] N. P. Ong, P. Monceau: Phys. Rev. B Vol. 16 (1977), p.3443.

Google Scholar

[14] G. Grüner: Density Waves in Solids, Addison-Wesley, Reading, MA (1994).

Google Scholar

[15] P. Monceau, N. P. Ong, A. M. Portis, A. Merschaut, J. Rouxel : Phys. Rev. Lett. Vol. 37 (1976), p.602.

Google Scholar

[16] R. M. Fleming, C. C, Grimes: Phys. Rev. Lett. Vol. 42 (1979), p.1423.

Google Scholar

[17] P. Monceau: Electronic Properties of Inorganic Quasi-One-Dimensional Matals, Part II, edited by P. Monceau, D. Reidel, Dordrecht (1985), p.139.

DOI: 10.1007/978-94-015-6923-1

Google Scholar

[18] R. L. Withers, J. A. Wilson: J. Phys. C vol. 19 (1986), p.4809.

Google Scholar

[19] A. Ayari, R. Danneau, H. Requardt, L. Ortega, J. E. Lorenzo, P. Monceau, R. Currat, S. Brazovskii, G. Grübel: Phys. Rev. Lett. Vol. 93 (2004), p.106404.

DOI: 10.1103/physrevlett.91.049704

Google Scholar

[20] Y. S. Hor, Z. L. Xiao, U. Welp, Y. Ito, J. F. Mitchell, R. E. Cook, W. K. Kwok. [21] Physics and Chemistry of Low-Dimensional Inorganic Conductors, C. Schlenker, edited by J. Dumas, M. Greenblatt and S. van Smaalen (354 NATO Advanced Studies Institute Series B: Physics), Plenum, NY 81996).

DOI: 10.1007/978-1-4613-1149-2

Google Scholar

[21] K. O'Neill, E. Slot, R. E. Thorne, H. S. J. van der Zant: Phys. Rev. Lett. Vol. 96 (2006), p.096402.

Google Scholar

[22] A. F. Isakovic, P. G. Evans, J. Kmetko, K. Cicak, Z. Cai, B. Lai, R. E. Thorne: Phys. Rev. Lett. Vol. 96 (2006), p.046401.

DOI: 10.1103/physrevlett.96.046401

Google Scholar

[23] K. Tsutsumi, T. Takagaki, M. Yamamoto, Y. Shiozaki, M. Ido, T. Sambongi, K. Yamaya, Y. Abe: Phys. Rev. Lett. Vol. 39 (1977), p.1675.

DOI: 10.1103/physrevlett.39.1675

Google Scholar

[24] R. M. Fleming, D. E. Moncton, D. B. McWhan: Phys. Rev. B Vol. 18 (1978), p.5560.

Google Scholar

[25] A. H. Moudden, J. D. Axe, P. Monceau, F. Lévy: Phys. Rev. Lett. Vol 65 (1990), p.223.

Google Scholar

[26] S. Rouzière, S. Ravy, J. P. Pouget, R. E. Thorne: Solid State Comm. Vol. 97 (1996), p.1073.

Google Scholar

[27] S. van Smaalen, J. L. de Boer, A. Meetsma, H. Graafsma, H.-S. Sheu, A. Darovskikh, P. Coppens, F. Lévy: Phys. Rev. B Vol. 45 (1992), p.3103.

Google Scholar

[28] F. Devreux: J. Phys. (Paris) Vol. 43 (1982), p.1489.

Google Scholar

[29] J. H. Ross Jr., Z. Wang, C. P. Slichter: Phys. Rev. Lett. Vol. 56 (1986), p.663.

Google Scholar

[30] S. Suh, W. G. Clark, P. Monceau, R. E. Thorne, S. E. Brown: Phys. Rev. Lett. Vol. 101 (2008), p.136407.

Google Scholar

[31] J. Schäfer, Eli Rotenberg, S. D. Kevan, P. Blaha, R. Claessen, R. E. Thorne: Phys. Rev. Lett. Vol. 87 (2001), p.196403.

Google Scholar

[32] J. Schäfer, M. Sing, R. Claessen, Eli Rotenberg, X. J. Zhou, R. E. Thorne, S. D. Kevan: Phys. Rev. Lett. Vol. 91 (2003), p.066401.

Google Scholar

[33] K. K. Fung, J. W. Steeds: Phys. Rev. Lett. Vol. 45 (1980), p.1696.

Google Scholar

[34] Z. Dai, C. G. Slough, R. V. Coleman, Phys. Rev. Lett. Vol. 66 (1991), p.1318.

Google Scholar

[35] S. van Smaalen, J. L. de Boer, P. Coppens, H. Graafsma, Phys. Rev. Lett. Vol. 67 (1991), p.1471.

Google Scholar

[36] Z. Dai, C. G. Slough, R. V. Coleman, Phys. Rev. Lett. Vol. 67 (1991), p.1472.

Google Scholar

[37] C. Brun, Z. Z. Wang, P. Monceau. J. Phys. IV (France) Vol. 131 (2005), p.225.

Google Scholar

[38] C. Brun, Z. Z. Wang, P. Monceau: Phys. Rev. B Vol. 80 (2009), p.045423.

Google Scholar

[39] C. Brun, Z. Z. Wang, P. Monceau, S. Brazovskii: Phys. Rev. Lett. Vol. 104 (2010), p.256403.

Google Scholar

[40] S. Brazovskii, C. Brun, Z.-Z. Wang, P. Monceau, Phys. Rev. Lett. Vol. 108 (2012), p.096801.

Google Scholar

[41] A. Prodan, H. J. P. van Midden, R. Žitko, E. Zupanič, J. C. Bennet, and H. Böhm: Sol. State Comm. Vol. 150 (2010), p.2134.

DOI: 10.1016/j.ssc.2010.09.010

Google Scholar

[42] A. Prodan, N. Jug, H. J. P. van Midden, H. Böhm, F. W. Boswell, J. C. Bennett: Phys. Rev. B Vol. 64 (2001), p.115423.

Google Scholar

[43] R. M. Fleming, C. H. Chen, D. E. Moncton: J. Phys. (Paris) Vol. 44 (1983) p. C3-1651.

Google Scholar

[44] H. Lüth, Surfaces and Interfaces of Solid Materials, Springer, Berlin, 1995, p.207.

Google Scholar

[45] S. J. L. Billinge, I. Levin, Science Vol. 316 (2007), p.561.

Google Scholar

[46] M. J. Cliffe, M. T. Dove, D. A. Drabold, A. L. Goodwin: Phys. Rev. Lett. Vol. 104 (2010), p.125501.

Google Scholar