Structural and Dielectric Studies of Cu Substituted Barium Hexaferrite Prepared by Sol-Gel Auto Combustion Technique

Article Preview

Abstract:

In the present study, a series of Cu substituted M type Barium hexagonal ferrite BaCuxFe12-xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized using a Sol- gel auto combustion method. The aim of the present work was to investigate the effects of Cu/Fe ratio on the crystallography and dielectric properties. The XRD studies reveal a formation of the single phase BaFe12O19 at the initial level and mixed phase of S, M and Y hexaferrite at the higher level of copper substitution. The dielectric measurements were carried out at room temperature in a frequency range of 20 Hz to 2MHz. the dielectric constant is found to decrease with the increase of frequency for all the compositions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

102-106

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Orlov, L. Palatinus, A. Arakcheeva and Gervais Chapuis, Acta Cryst. B63 (2007) 703–712.

Google Scholar

[2] M. C. Dimri, S. C. Kashyap, D.C. Dube, Ceramics International 30 (2004) 1623–1626.

Google Scholar

[3] M. Pardavi-Horvath, J. Magn. Magn. Mater. 215 (2006) 171–183.

Google Scholar

[4] H.R. Kirchmayr., J. Phys. D: Appl. Phys. 29 (1996) 2763–2778.

Google Scholar

[5] A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, (Chapter 12) 1999.

Google Scholar

[6] C. A.Stergiou, I.Manolakis, T. V.Yioultsis, G. Litsardakis, J. Magn. Magn. Mater. 322 (2010) 1532–1535.

Google Scholar

[7] L. Junliang, Z. Yanwei , G. Cuijing , Z. Wei, J. Eur. Ceram. Soc., 30 (2010) 993–997.

Google Scholar

[8] S.Kimpura, T.Kato, T.Hyodo, Y. Shimizu, M. Egashira, J. Magn. Magn. Mater. 312 (2007) 181.

Google Scholar

[9] M. M. Costa, G.F.M. Pires Junior, A. S. B. Sombra, Mater. Chem. Phys. 123 (2010) 35–39.

Google Scholar

[10] D. Mishra, S. Anand, R. K. Panda, R. P. Das, Mater Lett. 58 (2004) 1147– 1153.

Google Scholar

[11] W.D. Townes, J.H. Fang, A.J. Perrotta, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 125 (1967) 11.

Google Scholar

[12] S. A. Farag, M. A. Ahmed, S. M. Hammad, A. M. Moustafa, Cryst. Res. Technol. 36 (2001) 85–92.

Google Scholar

[13] B. Yang , J. Zhou, G. Zhilun, L. Longtu, Mater Lett., 57 (2002) 807– 811.

Google Scholar

[14] M. U. Rana, Misbah-ul-Islam, T. Abbas, Solid State Commun., 126 (2003) 129–133.

DOI: 10.1016/s0038-1098(02)00908-0

Google Scholar

[15] N. C. Pramanik, T. Fujii, J. Takada, Mater Lett., 60 (2006) 2718–2722.

Google Scholar

[16] A.M. Abo El Ata, S.M. Attia, J. Magn. Magn. Mater. 257 (2003) 165–174.

Google Scholar

[17] G. Sathishkumar, C. Venkataraju, R. Murugaraj, K. Sivakumar, J Mater Sci: Mater Electron DOI 10.1007/s10854-011(2011) 395-9.

Google Scholar