Compton Profiles and Nature of Bonding in Tantalum Chalcogenides

Article Preview

Abstract:

Abstract. We report the Compton profiles of tantalum chalcogenides (TaS2 and TaSSe) using Hartree–Fock and hybridization of Hartree–Fock and density functional theories within linear combination of atomic (Gaussian) orbitals. To interpret the theoretical data on Compton line shapes, we have measured the Compton profiles using our in-house 100 mCi 241Am γ-ray Compton spectrometer. To understand the relative nature of bonding, we have obtained the equal-valence-electron-density (EVED) profiles. The EVED profiles shows that charge in TaSSe is more localized than TaS2 in the bonding direction which confirms that TaSSe is more covalent than TaS2, which is in agreement with the Mulliken’s population analysis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

143-146

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Yan-Bin, L. Yan-Ling, Z. Guo-Hua, Z. Zhi and Q. Xiao-Ying, Anisotropic properties of TaS2, Chin. Phys. Soc. 16 (2007) 3809-06.

DOI: 10.1088/1009-1963/16/12/042

Google Scholar

[2] A.N. Enyashin, I.R. Shein, N.I. Medvedeva and A.L. Ivanovskii, Computational studies of 1T and 2H TaS2 in crystalline and nanotubular forms: Structural and electronic properties, Intern. Elect. Journal of Mol. Desi. 4 (2005) 316-328.

Google Scholar

[3] M.J. Cooper, P.E. Mijnarends, N. Shiotani, N. Sakai and A. Bansil, X-ray Compton Scattering, Oxford: Oxford University Press, 2004.

DOI: 10.1093/acprof:oso/9780198501688.001.0001

Google Scholar

[4] B.L. Ahuja (Ed.), Recent Trends in Radiation Physics Research, New Delhi: Himanshu Publication, 2010.

Google Scholar

[5] V.R. Saunders, R. Dovesi, C. Roetti, R. Orlando, C.M. Zicovich – Wilson, N.M. Harrison, K. Doll, B. Civalleri, I.J. Bush, Ph. D' Arco and M. Llunell, CRYSTAL03 User's Mannual, University of Torino, Torino (2003). Also M. D. Towler, A. Zupan and M. Causa, Comp. Phys. Commun. 98, 181 (1996).

Google Scholar

[6] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100.

DOI: 10.1103/physreva.38.3098

Google Scholar

[7] C. Lee, W. Yang and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785-789.

DOI: 10.1103/physrevb.37.785

Google Scholar

[8] S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58 (1980) 1200-1211.

DOI: 10.1139/p80-159

Google Scholar

[9] F. Biggs, L.B. Mandelsohn and J.B. Mann, Hartree-Fock Compton profiles for the elements, Atom. Data Nucl. Data Tab. 16 (1975) 201-308.

DOI: 10.1016/0092-640x(75)90030-3

Google Scholar

[10] B.L. Ahuja, V. Sharma, A. Rathor, A.R. Jani and B.K. Sharma, Electronic structure of rhodium using Compton profiles: Experiment and theory, Nucl. Instrum. Methods B 262 (2007) 391-398.

DOI: 10.1016/j.nimb.2007.05.029

Google Scholar

[11] B.G. Williams (Ed.), Compton Scattering, McGraw-Hills, New York (1977).

Google Scholar

[12] M.J. Cooper, P.E. Mijnarends, N. Shiotani, N. Sakai and A. Bansil, X- ray Compton Scattering, Oxford Science Publications, New York (2004).

DOI: 10.1093/acprof:oso/9780198501688.001.0001

Google Scholar