Role of Oxygen Atoms in Bonding Properties of Semiconducting Tungsten Trioxide

Article Preview

Abstract:

We have computed the Mulliken’s population (MP) to deduce charge transfer from WO in semiconducting WO3 using density functional theory (DFT) within pseudopotential scheme. In the DFT scheme, second order generalized gradient approximation for exchange and correlation has been implemented for the first time. The MP data show significant difference in charge transfer between W and six non–equivalent O atoms. In addition, the full potential linearized augmented plane wave method has been applied to compute the partial and total density of states. The MP data have also been explained in terms of partial DOS.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

156-159

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.W. Bullett, Bulk and surface electron states in WO3 and tungsten bronzes, J. Phys. C: Solid State Phys. 16 (1983) 2197- 2207.

DOI: 10.1088/0022-3719/16/11/022

Google Scholar

[2] F. Cora, A. Patel, N.M. Harrison, R. Dovesi, C.R.A. Catlow, An ab initio Hartree-Fock study of the cubic and tetragonal phases of bulk tungsten trioxide, J. Am. Chem. Soc. 118 (1996) 12174-12182.

DOI: 10.1021/ja961514u

Google Scholar

[3] F. Cora, M.G. Stachiotti, C.R.A. Catlow, C.O. Rodriguez, Transition metal oxide chemistry: Electronic structure study of WO3, ReO3, and NaWO3, J. Phys. Chem. B 101 (1997) 3945-3952.

DOI: 10.1002/chin.199731003

Google Scholar

[4] G.A. de Wijs, P.K. de Boer, R.A. de Groot, G. Kresse, Anomalous behavior of the semi-conducting gap in WO3 from first-principles calculations, Phys. Rev. B 59 (1991) 2684-2693.

DOI: 10.1103/physrevb.59.2684

Google Scholar

[5] C.J. Howard, V. Luca, K.S. Knight, High-temperature phase transitions in tungsten trioxide-the last word?, J. Phys.: Condens. Matter 14 (2002) 377-387.

DOI: 10.1088/0953-8984/14/3/308

Google Scholar

[6] C. Lambert-Mauriat, V. Oison, Density-functional study of oxygen vacancies in monoclinic tungsten oxide, J. Phys.: Condens. Matter 18 (2006) 7361-7371.

DOI: 10.1088/0953-8984/18/31/028

Google Scholar

[7] K. Masek, J. Libra, T. Skala, M. Cabala, V. Matolin, V. Chab, K.C. Prince, SRPES investigation of tungsten oxide in different oxidation states, Surf. Sci. 600 (2006) 1624-1627.

DOI: 10.1016/j.susc.2005.11.048

Google Scholar

[8] M.R. Field, D.G. McCulloch, S.N.H. Lim, A. Anders, V.J. Keast, R.W. Burgees, The electronic structure of tungsten oxide thin films prepared by pulsed cathodic arc deposition and plasma-assisted pulsed magnetron sputtering, J. Phys.: Condens. Matter 20 (2008) 175216-1 to 7.

DOI: 10.1088/0953-8984/20/17/175216

Google Scholar

[9] M.N. Huda, Y. Yan, C.-Y. Moon, S.-H. Wei, M.M. Al-Jassim, Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO3, Phys. Rev. B 77 (2008) 195102-1 to 13.

DOI: 10.1103/physrevb.77.195102

Google Scholar

[10] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunell, CRYSTAL2009 User's Manual, University of Torino, Torino, Italy, 2009.

Google Scholar

[11] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Vienna, Austria, 2001.

Google Scholar

[12] Y. Zhao, D.G. Truhlar, Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound, J. Chem. Phys. 128 (2008) 184109-1 to 8.

DOI: 10.1063/1.2912068

Google Scholar

[13] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[14] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials related aspects, Int.J. Hydrogen Energy 27 (2001) 991-1022.

DOI: 10.1016/s0360-3199(02)00022-8

Google Scholar