Single Crystal Growth of Bi:Sb Alloys

Article Preview

Abstract:

The solid-liquid interface of Bi (1-x) Sb(x) crystal growth is most favorable for investigation of electron and phonon phenomena. Bismuth is a semimetal with high electron and hole mobility. Interest in Bi-Sb material system has recently been stimulated by promise of a new generation of thermoelectric materials based on these alloy. The crystals were grown using zone melting method with 1.0 and 1.5 cm/hour growth velocity and temperature gradient 650C/cm. The surface was determinal on the basis of growth feature profiles under optical microscope. The features observed on the top-free surface of as-grown crystals have also been discussed. The crystals have been characterized by using the powder XRD technique. The optical absorption was measured in the wave number range 510 cm-1 to 4000 cm-1. From the optical absorption through direct inter band transition.The results are reported and discussed in detailed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 209)

Pages:

173-176

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Yang, M. J. Herox and V I Wang, Appl. Phys. Lett. 76, 795 (2000).

Google Scholar

[2] A. L. Jain, Phys. Rev. 114, 1518 (1959).

Google Scholar

[3] S. Golin, Phys. Rev. 176, 830 (1968).

Google Scholar

[4] E. J. Tichovolski and J. G. Mavroides, Solid State Commun, 7, 927 (1969).

Google Scholar

[5] G. A Mironova, M. V Sudakaova and Ta. G. Ponomarev, Fiz. Tverd. Tela, 22, 3628 (1980).

Google Scholar

[6] G. Oelfart, G. Schneider, W. Kraak, and R. Hermann, Phys. Status Solidi (b), 74, k75 (1976).

Google Scholar

[7] W. M. Yim and Amith, Solid-State Electronic. 15, 1141 (1972).

Google Scholar

[8] B. Lenoir, M. Cassart, J. -P. Michenaud, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996).

DOI: 10.1016/0022-3697(95)00148-4

Google Scholar

[9] D. M. Brown and S. J. Silverman, Phys. Rev. 136, A290 (1964).

Google Scholar

[10] V. G. Alekseeva, N. F. Zaets, A. A. Kudryashov, and A. B. Ormount, Fiz. Tekh. Poluprovodn. 10, 2243 (1976).

Google Scholar

[11] N. B. Brandt and E. A. Svistova, J. Low Temp. Phys. 2, 1 (1970).

Google Scholar

[12] Plaskiy, V.T., Arkhipov, A. V. And prokhorov, E.D., Microwave & telecomunication technology (crimico,2011), 21st international crimean conference prociding. 715-716 (2011)

Google Scholar

[13] A.J. Noreika, et al., J.Appl.Phys. 53, 4932 (1982).

Google Scholar

[14] T.P. Humphreys, et al., Appl.Phys.Lett.53, 142 (1988).

Google Scholar

[15] J.L. Ziko, J.E. Greene, J.Appl.Phys.51, 1549 (1980).

Google Scholar

[16] J.J. Lee, et al., Appl.Phys.Lett.70, 3266 (1997).

Google Scholar

[17] G. R. Pandiya, Ph.D. Thesis, M. S. University, (1974).

Google Scholar

[18] P. H. Soni, C. F. Desai, S. R. Bhavsar, Surf. Rev. and Lett. 6, No 2, 117 (1999).

Google Scholar

[19] K. R. Shah, G.R. Pandya, C. F. Desai, Cryst.Res, Technology 33, 5, 733-736 (1998).

Google Scholar

[20] JCPDS (File) Pub. International Center for Diffraction Data, USA. ed (1997)

Google Scholar

[21] Gradients in pure Te and Se doped InBi Systems, DAE – Solid State Symposium, Vol. – 40C, 240 (1997).

Google Scholar