[1]
W. Mitkowski: Approximation of Fractional Diffusion-Wave Equation, Acta Mechanica et Automatica, Vol. 5 No. 2, (2011).
Google Scholar
[2]
M. Weilbeer: Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background, Technischen Universität Braunschweig, Doctors Dissertation, (2005).
Google Scholar
[3]
T. Kaczorek: Positive fractional linear systems, Pomiary Automatyka Robotyka, Vol. 2, pp.91-112, (2011).
Google Scholar
[4]
M. Busłowicz: Wybrane zagadnienia z zakresu liniowych, ciągłych układów niecałkowitegorzędu, Pomiary Automatyka Robotyka, Vol. 2, pp.93-114, (2010).
DOI: 10.14313/par_206/94
Google Scholar
[5]
S.B. Yuste, K. Lindenberg: Subdiffusion-limited A+A reactions, Physics Review Letters Vol. 87 No 11, 118301, (2001).
Google Scholar
[6]
E. Barkai, R. Metzler, J. Klafter: From continuous time random walks to the fractional Focker-Planck equation, Physical Review E, Vol. 61 No 1, pp.132-138, (2000).
DOI: 10.1103/physreve.61.132
Google Scholar
[7]
G. M. Zaslavsky: Chaos, fractional kinetics and anomalous transport, Physics Reports, Vol. 371 No 6, pp.461-580, (2002).
DOI: 10.1016/s0370-1573(02)00331-9
Google Scholar
[8]
A. Dzielinski, G. Sarwas, D. Sierociuk: Comparison and validation of integer and fractional order ultracapacitor models, Advances in Difference Equations Vol. 11 (2011).
DOI: 10.1186/1687-1847-2011-11
Google Scholar
[9]
E. Scalas, R. Gorenflo, F. Mainardi: Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, Vol. 284, pp.376-384, (2000).
DOI: 10.1016/s0378-4371(00)00255-7
Google Scholar
[10]
Q. Yang: Novel analytical and numerical methods for solving fractional dynamical systems, Queensland University of Technology, Doctors Dissertation, (2010).
Google Scholar
[11]
W. Mitkowski, A. Obrączka: Simple identification of fractional differential equation, Solid State Phenomena Vol. 180 (2012), pp.331-338.
DOI: 10.4028/www.scientific.net/ssp.180.331
Google Scholar
[12]
D. Marquardt: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM Journal Applied Math. Vol. 11, p.431–441, (1963).
Google Scholar
[13]
J.C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions, SIAM Journal of Optimization Vol. 9 No 1, p.112–147, (1998).
DOI: 10.1137/s1052623496303470
Google Scholar