The Comparison of Parameter Identification Methods for Fractional, Partial Differential Equation

Article Preview

Abstract:

In this paper the parameter identification methods for nonlinear models were compared for fractional, partial differential equation. The compared three methods are: the Levenberg-Marquardt algorithm, the Gauss-Newton algorithm and Nelder-Mead Simplex method. The series of numerical experiments were performed to test their robustness and calculation speed. The result of this tests were presented and described.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 210)

Pages:

265-270

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Mitkowski: Approximation of Fractional Diffusion-Wave Equation, Acta Mechanica et Automatica, Vol. 5 No. 2, (2011).

Google Scholar

[2] M. Weilbeer: Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background, Technischen Universität Braunschweig, Doctors Dissertation, (2005).

Google Scholar

[3] T. Kaczorek: Positive fractional linear systems, Pomiary Automatyka Robotyka, Vol. 2, pp.91-112, (2011).

Google Scholar

[4] M. Busłowicz: Wybrane zagadnienia z zakresu liniowych, ciągłych układów niecałkowitegorzędu, Pomiary Automatyka Robotyka, Vol. 2, pp.93-114, (2010).

DOI: 10.14313/par_206/94

Google Scholar

[5] S.B. Yuste, K. Lindenberg: Subdiffusion-limited A+A reactions, Physics Review Letters Vol. 87 No 11, 118301, (2001).

Google Scholar

[6] E. Barkai, R. Metzler, J. Klafter: From continuous time random walks to the fractional Focker-Planck equation, Physical Review E, Vol. 61 No 1, pp.132-138, (2000).

DOI: 10.1103/physreve.61.132

Google Scholar

[7] G. M. Zaslavsky: Chaos, fractional kinetics and anomalous transport, Physics Reports, Vol. 371 No 6, pp.461-580, (2002).

DOI: 10.1016/s0370-1573(02)00331-9

Google Scholar

[8] A. Dzielinski, G. Sarwas, D. Sierociuk: Comparison and validation of integer and fractional order ultracapacitor models, Advances in Difference Equations Vol. 11 (2011).

DOI: 10.1186/1687-1847-2011-11

Google Scholar

[9] E. Scalas, R. Gorenflo, F. Mainardi: Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications, Vol. 284, pp.376-384, (2000).

DOI: 10.1016/s0378-4371(00)00255-7

Google Scholar

[10] Q. Yang: Novel analytical and numerical methods for solving fractional dynamical systems, Queensland University of Technology, Doctors Dissertation, (2010).

Google Scholar

[11] W. Mitkowski, A. Obrączka: Simple identification of fractional differential equation, Solid State Phenomena Vol. 180 (2012), pp.331-338.

DOI: 10.4028/www.scientific.net/ssp.180.331

Google Scholar

[12] D. Marquardt: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM Journal Applied Math. Vol. 11, p.431–441, (1963).

Google Scholar

[13] J.C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions, SIAM Journal of Optimization Vol. 9 No 1, p.112–147, (1998).

DOI: 10.1137/s1052623496303470

Google Scholar