Microstructure of WE43 Magnesium Matrix Composite Reinforced Ceramic Particles

Article Preview

Abstract:

Magnesium alloys containing yttrium and neodymium are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. In the present study, WE43 magnesium matrix composite reinforced with SiC and carbon particulates were fabricated by stir casting. The microstructure of the composite was investigated by optical microscopy, quantitative metallography, scanning electron microscope and XRD analysis. Microstructure characterization of WE43 MMC showed inhomogeneous reinforcement distribution and presence of shrinkage porosity. Reinforcing particles are well bonded with the matrix, however, in some cases thin reaction layers was detected. The presence of SiC particles assisted in improving hardness.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 211)

Pages:

101-108

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Cabibbo, S. Spigarelli, A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC, Mater. Charact. 62 (2011) 959-969.

DOI: 10.1016/j.matchar.2011.04.011

Google Scholar

[2] D. Kuc, E. Hadasik, I. Bednarczyk, Plasticity and microstructure of hot deformed magnesium alloy AZ61, Solid St. Phenom. 191 (2012) 101-108.

DOI: 10.4028/www.scientific.net/ssp.191.101

Google Scholar

[3] T. Rzychoń, A. Kiełbus, G. Dercz, Structure refinement of the multi-phase Mg-Al-Sr alloy, Solid St. Phenom. 163 (2010) 169-172.

DOI: 10.4028/www.scientific.net/ssp.163.169

Google Scholar

[4] A. Kiełbus, T. Rzychoń, The intermetallic phases in sand casting magnesium alloys for elevated temperature, Materials Sci. Forum 690 (2011) 214-217.

DOI: 10.4028/www.scientific.net/msf.690.214

Google Scholar

[5] G. Garcés, M. Rodríguez, P. Pérez, P. Adeva, Microstructural and mechanical characterisation of WE54–SiC composites, Mater. Sci. Eng. A527 (2010) 6511–6517.

DOI: 10.1016/j.msea.2010.07.026

Google Scholar

[6] B. Ścibisz, J. Adamiec, Evaluation of susceptibility to hot cracking of WE43 magnesium alloy welds in transvarestraint test, Arch. Metall. Mater. 55 (2010) 131-141.

DOI: 10.4028/www.scientific.net/ssp.226.95

Google Scholar

[7] T. Rzychoń, J. Szala, A. Kiełbus, Microstructure, castability, microstructural stability and mechanical properties of ZRE1 magnesium alloy, Arch. Metall. Mater. (2012) 254-262.

DOI: 10.2478/v10172-012-0018-3

Google Scholar

[8] Z. Trojanova, Z. Szaraz, F. Chmelik, P. Lukac, Acoustic emission from deformed Mg–Y–Nd alloy and this alloy reinforced with SiC particles, J. Alloys Compd. 504 (2010) L28–L30.

DOI: 10.1016/j.jallcom.2010.05.138

Google Scholar

[9] A. J. Dolata, M. Dyzia, Aspects of fabrication aluminium matrix heterophase composites by suspension method, IOP Conference Series: Materials Science and Engineering 35 (2012) 012020.

DOI: 10.1088/1757-899x/35/1/012020

Google Scholar

[10] P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process, Mater. Sci. Eng. A 460–461 (2007) 357–364.

DOI: 10.1016/j.msea.2007.01.052

Google Scholar

[11] T. Rzychoń, A. Kiełbus, B. Bierska-Piech, Characterization of β phase in WE54 magnesium alloy, Solid St. Phenom. 130 (2007) 155-158.

DOI: 10.4028/www.scientific.net/ssp.130.155

Google Scholar

[12] Y. Cai, M.J. Tan, G.J. Shen, H.Q. Su, Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite, Mater. Sci. Eng. A282 (2000) 232–239.

DOI: 10.1016/s0921-5093(99)00707-8

Google Scholar

[13] K.N. Braszczyńska, L. Lityńska, A. Zyska, W. Baliga, TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles, Mater. Chem. Phys. 81 (2003) 326–328.

DOI: 10.1016/s0254-0584(02)00594-1

Google Scholar

[14] A. Olszówka-Myalska, S.A. McDonald, P.J. Withers, H. Myalska, G. Moskal, Microstructure of in situ Mg metal matrix composites based on silica nanoparticles, Solid St. Phenom. 191 (2012) 189-198.

DOI: 10.4028/www.scientific.net/ssp.191.189

Google Scholar