[1]
V.S. Raja, T. Shoji, Stress corrosion cracking. Theory and practice, Woodhead Publishing Limited, Cambridge, (2011).
Google Scholar
[2]
R. Zeng, J. Zhang, W. Huang, W. Dietzel, K. Kainer, C. Blawert, W. Ke, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous Met. Soc. China 16 (2006) 763-771.
DOI: 10.1016/s1003-6326(06)60297-5
Google Scholar
[3]
T. Zhang, Y. Shao, G. Meng, Y. Li, F. Wang, Effects of hydrogen on the corrosion of pure magnesium, Electrochim. Acta 52 (2006) 1323-1328.
DOI: 10.1016/j.electacta.2006.07.046
Google Scholar
[4]
W. Dietzel, M. Pfuff, N. Winzer, Testing and mesoscale modelling of hydrogen assisted cracking of magnesium, Eng. Fract. Mech. 77 (2010) 257-263.
DOI: 10.1016/j.engfracmech.2009.07.009
Google Scholar
[5]
N. Winzer, A. Atrens, W. Dietzel, G. Song, K.U. Kainer, Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium, Mat. Sci. Eng. A 472 (2008).
DOI: 10.1016/j.msea.2007.03.021
Google Scholar
[6]
A. Seyeux, M. Liu, P. Schmutz, G. Song, A. Atrens, P. Marcus, ToF-SIMS depth profile of the surface film on pure magnesium formed by immersion in pure water and the identification of magnesium hydride, Cor. Sci. 51 (2009), 1883-1886.
DOI: 10.1016/j.corsci.2009.06.002
Google Scholar
[7]
N. Winzer, A. Atrens, W. Dietzel, V.S. Raja, G. Song, K.U. Kainer, Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys, Mat. Sci. Eng. A 488 (2008) 339-351.
DOI: 10.1016/j.msea.2007.11.064
Google Scholar
[8]
J. Chen, J. Wang, E. Han, W. Ke, Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0. 1M Na2SO4 solution, Mat. Sci. Eng. A 488 (2008) 428-434.
DOI: 10.1016/j.msea.2007.11.035
Google Scholar
[9]
J. Chen, J. Wang, E. Han, J. Dong, W. Ke, States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution, Cor. Sci. 50 (2008) 1292-1305.
DOI: 10.1016/j.corsci.2008.01.028
Google Scholar
[10]
J. Chen, J. Dong, J. Wang, E. Han, W. Ke, Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution, Cor. Sci. 50 (2008), 3610-3614.
DOI: 10.1016/j.corsci.2008.09.013
Google Scholar
[11]
R.G. Song, C. Blawert, W. Dietzel, A. Atrens, A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy, Mat. Sci. Eng. A 399 (2005) 308-317.
DOI: 10.1016/j.msea.2005.04.003
Google Scholar
[12]
M. Bobby Kannan, W. Dietzel, R.K. Singh Raman, P. Lyon, Hydrogen-induced-cracking in magnesium alloy under cathodic polarization, Scrip. Mat. 57 (2007) 579-581.
DOI: 10.1016/j.scriptamat.2007.06.019
Google Scholar
[13]
N. Winzer, A. Atrens, W. Dietzel, G. Song, K.U. Kainer, Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys, Mat. Sci. Eng. A 466 (2007) 18-31.
DOI: 10.1016/j.msea.2007.03.020
Google Scholar
[14]
E.F. Volkova, G.I. Morozova, Role of hydrogen in deformed magnesium alloys of the Mg–Zn–Zr–REM system, Metal Sci. Heat Treat. 50 (2008) 105-109.
DOI: 10.1007/s11041-008-9021-8
Google Scholar
[15]
T. Rzychoń, A. Kiełbus, Microstructure of WE43 casting magnesium alloy, J. Achiev. Mater. Man. Eng. 21 (2007), 31-34.
Google Scholar
[16]
A. Kiełbus, The influence of ageing on structure and mechanical properties of WE54 alloy, J. Achiev. Mater. Man. Eng. 23 (2007) 27-30.
Google Scholar
[17]
T. Rzychoń, A. Kiełbus, G. Dercz, Structural and quantitative analysis of die cast AE44 magnesium alloy, J. Achiev. Mater. Man. Eng. 22 (2007) 43-46.
Google Scholar
[18]
T.J. Marrow, A. Bin Ahmad, I.N. Khan, S.M.A. Sim, S. Torkamani, Environment-assisted cracking of cast WE43-T6 magnesium, Mat. Sci. Eng. A 387-389 (2004) 419-423.
DOI: 10.1016/j.msea.2003.12.074
Google Scholar