The Microstructure of Elektron21 and WE43 Magnesium Casting Alloys after Subsequent Melting Process Operations

Article Preview

Abstract:

Magnesium alloys are one of the lightest structural metallic materials. Their specific strength and stiffness is comparable to this, characterizing aluminum alloys and even some groups of steel and titanium alloys. Their main disadvantage is low maximum working temperature (about 120°C for Mg-Al-Zn alloys). This led to development of Mg-RE-Zr alloys, which can work up to 250°C. The paper presents results of the investigations of influence of subsequent melting operations on the Elektron 21 and WE43 magnesium alloys. Elektron 21 alloy had been prepared from the pure ingots, while WE43 alloy from the scrap material. Average area of the grain flat section and eutectics volume fraction had been evaluated quantitatively. The results of the evaluation have been verified by means of Mann-Whitney U-Test and Kolmogorov-Smirnov statistical tests. The liquid metal treatment led to refinement of the grain only in Elektron 21 alloy (from Ᾱ=3559μm2 to Ᾱ=1849 μm2). Multiple modification of the WE43 alloy does not lead to further decrease of the average area of grain flat section (from Ᾱ=1638μm2 to Ᾱ=1871 μm2).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 211)

Pages:

65-70

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASM Speciality Handbook.: Magnesium and magnesium alloys. ASM International, (1999).

Google Scholar

[2] J. Adamiec, S. Mucha: Determination brittle temperature range of MSR-B alloy, Arch. of Metallurgy and Materials 56 (2011) 117-127.

DOI: 10.2478/v10172-011-0013-0

Google Scholar

[3] A. Kiełbus, T.  Rzychoń, The intermetallic phases in sand casting magnesium alloys for elevated temperature, Materials Science Forum 690 (2011) 214-217.

DOI: 10.4028/www.scientific.net/msf.690.214

Google Scholar

[4] T. Rzychoń, A. Kiełbus, M. Serba, The influence of pouring temperature on the microstructure and fluidity of Elektron 21 and WE54 magnesium alloys, Archives of Metallurgy and Materials 55 (2010) 7-13.

Google Scholar

[5] M. Quian, A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Materialia 54 (2006) 881–886.

DOI: 10.1016/j.scriptamat.2005.11.002

Google Scholar

[6] M. Quian, D. H. StJohn, M. T. Frost, Heterogeneous nuclei size in magnesium–zirconium alloys, Scripta Materialia 50 (2004) 1115–1119.

DOI: 10.1016/j.scriptamat.2004.01.026

Google Scholar

[7] M. Quian, D. H. StJohn, M. T. Frost, M. R. Barnett, Grain refinement of pure magnesium using rolled Zirmax® master alloy (Mg-33. 3Zr) in H. I. Kaplan (ed) Magnesium technology 2003 TMS (2003).

Google Scholar

[8] A. Das, G. Liu, Z. Fan, Investigation on the microstructural refinement of an Mg–6 wt. % Zn alloy, Materials Science and Engineering A 419 (2006) 349–356.

DOI: 10.1016/j.msea.2006.01.023

Google Scholar

[9] M. Maliński, Wybrane zagadnienia statystyki matematycznej w Excelu i pakiecie Statistica, Wydawnictwo Politechniki Śląskiej, Gliwice 2010 (in Polish).

Google Scholar