Kinetics of Corrosion Processes of Alloy on the Intermetallic Phase Matrix FeAl in High Temperature in Air Atmosphere

Article Preview

Abstract:

The aim of this paper was to determine the resistance to high-temperature corrosion in atmosphere of air for alloy Fe-40Al-5Cr-0.2Ti-0.2B. Corrosion tests were conducted in temperatures from 600 to 900°C in time from 2 to 64 hours. Conducted tests have shown a slight increase of weight of samples in periods of time which followed. Increase of weight is connected with corrosion products in the form of passive oxides which form on the surface of the alloy. Kinetics of corrosion processes has parabolic course in tested temperature range which proves the formation of passive layers of corrosion products on the surface of samples. Heat resistance of the alloy on intermetallic phase matrix FeAl brings about potential possibilities to apply this alloy as a material meant for work in elevated and high temperatures in the environment which includes oxygen.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 212)

Pages:

137-140

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Bojar, W. Przetakiewicz, Materiały metalowe z udziałem faz międzymetalicznych, Ed. BEL Studia (in Polish), Warszawa, (2006).

Google Scholar

[2] G. Niewielski, M. Jabłońska, Charakterystyka i zastosowanie intermetali z układu Fe-Al (in Polish), Inżynieria Materiałowa 2 (2007) 43-46.

Google Scholar

[3] K. Kulak, M. Kupka, Utlenianie wieloskładnikowego aluminidku żelaza na osnowie fazy FeAl (in Polish), Inżynieria Materiałowa 4 (2011) 514-518.

Google Scholar

[4] N. Babu, A. Ghosh, High-temperature oxidation of Fe3Al-based iron aluminides in oxygen, Corrosion Science 43 (2001) 2239-2254.

DOI: 10.1016/s0010-938x(01)00035-x

Google Scholar

[5] M. Martinez, B. Viguier, Relation between composition, microstructure and oxidation in iron aluminides, Intermetallics 14 (2006) 1214-1220.

DOI: 10.1016/j.intermet.2005.11.018

Google Scholar

[6] B. Formanek, B. Szczucka-Lasota, Odporność na korozję wysokotemperaturową stopów międzymetalicznych z układu Fe-Al (in Polish), Ochrona przed korozją 12 (2009) 583-587.

Google Scholar

[7] J. Cebulski, Odporność korozyjna stopów na osnowie fazy międzymetalicznej FeAl po krystalizacji i przeróbce plastycznej (in Polish), Hutnik-Wiadomości Hutnicze 8 (2012) 557-561.

DOI: 10.15199/24.2015.8.3

Google Scholar

[8] L. Fengqun, Y. Zhiming, Corrosion behavior of Fe-40Al sheet in N2–11. 2O2–7. 5CO2 atmospheres with various SO2 contents at 1273 K, Intermetallics 11 (2003) 135-141.

DOI: 10.1016/s0966-9795(02)00190-5

Google Scholar

[9] M.A. Montealegre, Oxidation behavior of Fe40Al alloy strip, Intermetallics 9 (2001) 487-492.

DOI: 10.1016/s0966-9795(01)00028-0

Google Scholar

[10] B. Szczucka-Lasota, B. Formanek, Oxidation models of the growth of corrosion products on the intermetallic coatings strengthened by a fine dispersive Al2O3, Journal of Materials Processing Technology 164 (2005) 935-939.

DOI: 10.1016/j.jmatprotec.2005.02.213

Google Scholar

[11] J. Cebulski, S. Lalik, Kinetics of corrosion on the intermetallic phase matrix FeAl in high temperature, Journal of Achievements in Materials and Manufacturing Engineering 57 (2013) 7-14.

DOI: 10.4028/www.scientific.net/ssp.212.137

Google Scholar