[1]
Y. Tamarin, Protective coatings for turbine blades, ASM International, The Materials Information Society, Materials Park, Ohio, (2002).
Google Scholar
[2]
A.K. Koul, V.R. Parameswaran, J-P. Immarigeon, W. Wallace, Advances in High Temperature Structural Materials and Protective Coatings, A Publication from National Research Council of Canada, Ottawa, (1994).
Google Scholar
[3]
J. Sieniawski, Criteria and methods of assessment of materials intended for elements of aircraft turbine engines, Ed. Oficyna Wyd. Politechniki Rzeszowskiej, (1995).
Google Scholar
[4]
Seon-gab Kim, Young-ha Hwang, Tae-gu Kim, Chang-min Shu, Failure analysis of J85 engine turbine blades, Engineering Failure Analysis, 15 (2008) 394-400.
DOI: 10.1016/j.engfailanal.2007.01.015
Google Scholar
[5]
Haijun Tang, Dashu Cao, Hongyu Yao, Mingli Xie, Ruichun Duan, Fretting fatigue failure of an aero engine turbine blade, Engineering Failure Analysis, 16 (2009) 2004-(2008).
DOI: 10.1016/j.engfailanal.2008.07.010
Google Scholar
[6]
A. Strang, E. Lang, R. Pichoir, Practical implications of the use of aluminide coatings for the corrosion protection of superalloys in gas turbines, Materials Substitution and Recycling, AGARD Conference Proceedings SMP 356 (1983).
Google Scholar
[7]
A. Strang, High Temperature Properties of Coated Superalloys, Behaviour of High Temperature Alloys in Aggressive Environmeents, The Metals Society, London, UK (1980) 595-611.
Google Scholar
[8]
M. Cieśla, Durability of ŻS6U nickel superalloy with aluminide protective layer in thermal and mechanical load conditions, Monograph, Ed. Wydawnictwo Pol. Śl. (in polish), (2009).
Google Scholar
[9]
J. Okrajni, M. Cieśla, L. Swadźba, High-Temperature Low-Cycle Fatigue and Creep Behaviour of Nickel-Based Superalloys with Heat-Resistant Coatings, Fatigue and Fractute of Materials and Engineering Structures, 21 (1998) 947-954.
DOI: 10.1046/j.1460-2695.1998.00090.x
Google Scholar
[10]
R. Castillo R., A.K. Koul, J-P. Immarigeon, The Effects of Sernice Exposure on the Creep Properties of Cast IN-738LC Subjected to Low Stress High Temperature Creep Conditions, Superalloys 88, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, Eds., The Metallurgical Society, (1988).
DOI: 10.7449/1988/superalloys_1988_805_814
Google Scholar
[11]
H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps. The plasticity and creep of metals and ceramics, Oxford, Pergamon press (1982) 166.
Google Scholar
[12]
M. Zielińska, J. Sieniawski, M. Poreba, Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified CoAl2O4, Archives of Materials Science and Engineering, 28 (2007) 629-632.
Google Scholar
[13]
M. Zielińska, J. Sieniawski, M. Wierzbińska, Effect of modification on microstructure and mechanical properties of cobalt casting superalloy, Archives of Metallurgy and Materials, 53 (2008) 887-893.
Google Scholar
[14]
F. Binczyk, J. Śleziona, Effect of modification on the mechanical properties of IN-713C alloy, Archives of Foundry Engineering, 10 (2010) 195-198.
Google Scholar
[15]
F. Binczyk, J. Śleziona, Mechanical properties and creep resistance behaviour of IN-713C alloy castings, Archives of Foundry Engineering, 10 (2010) 9-13.
Google Scholar
[16]
F. Binczyk, J. Śleziona, P. Gradoń, Modification of the macrostructure of nickel superalloys with cobalt nanoparticles, Composites, 1 (2011) 49-55.
Google Scholar
[17]
F. Binczyk, J. Śleziona, P. Gradoń, Ceramic filters for bulk inoculation of nickel alloy castings, Archives of Foundry Engineering, 11 (2011) 29-33.
Google Scholar
[18]
F. Binczyk, J. Śleziona, The ATD thermal analysis of selected nickel superalloys, Archives of Foundry Engineering, 10 (2010) 13-19.
Google Scholar
[19]
M. Cieśla, F. Binczyk, M. Mańka, Impact of surface and volume modification of nickel superalloys IN-713C and MAR-247 on high temperature creep resistance, Archives of FoundaryEngineering, 12 (2012) 17-24.
DOI: 10.2478/v10266-012-0101-2
Google Scholar
[20]
F. Binczyk, P. Gradoń, M. Mańka, Mechanical Properties And Creep Resistance of Nickel Alloys After Complex Modification And Double Filtration, Archives of FoundaryEngineering, 12 (2012) 5-8.
DOI: 10.2478/v10266-012-0026-9
Google Scholar
[21]
J. Wyrzykowski, E. Pleszakow, J. Sieniawski, Deformation and cracking of metals (in polish), Ed. WNT, Warszawa, (1999).
Google Scholar
[22]
M.Ł. Bernsztejn, W.A. Zajmowskij, Structure and mechanical properties of metals (in polish), WNT, Warszawa, (1973).
Google Scholar
[23]
F.R.N. Nabarro, C.M. Cress, P. Kotschy, Thermodynamicdriving forse for rafting in superalloys, Acta materialia 44 (1996) 3189-3198.
DOI: 10.1016/1359-6454(95)00423-8
Google Scholar
[24]
A. Epishin, T. Link, Mechanism of high temperature creep of nickel-based superalloys under low applied stresses, Philosophical Magazine 84 (2004) 1979-(2000).
DOI: 10.1080/14786430410001663240
Google Scholar