Electrical Transport Features in Fe3O4/SiO2/n-Si Hybrid Structures

Article Preview

Abstract:

The temperature dependencies of the resistivity of planar structures Fe3O4/SiO2/n-Si, with Fe3O4 films of different thicknesses, were investigated. In the temperature range below 125 K, an anomalous decrease in the resistivity was observed. This effect is explained by switching of the conductance channel from the Fe3O4 film to the inversion layer of Si substrate due to the field-assisted tunneling of carriers through the semi-insulating Fe3O4/SiO2 double insulator. Confirmation was obtained by the current-voltage characteristics measured at 80 K. It was found that current-voltage characteristics are S-shaped and correspond to the MIS switch diode.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

56-59

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu. S. Dedkov, U. Rüdiger, and G. Güntherodt. Phys. Rev. B 65 (2002) 064417.

Google Scholar

[2] T. L. Qu , Y. G. Zhao, H. F. Tian, C. M. Xiong, S. M. Guo, J. Q. Li. Appl. Phys. Lett. 90 (2007 )223514.

Google Scholar

[3] Xianjie Wang, Yu Sui, Jinke Tang, Yao Li, Xingquan Zhang, Cong Wang, Zhiguo Liu, and Wenhui Su. J. Appl. Phys. 105 (2009) 07B101.

Google Scholar

[4] J. Dai, L. Spinu, K. -Y. Wang, L. Malkinski and J. Tang. J. Phys. D: Appl. Phys. 33 (2000) L65.

Google Scholar

[5] Jinke Tang, Jianbiao Dai, Kaiying Wang, Weilie Zhou, Nancy Ruzycki, Ulrike Diebold. J. Appl. Phys. 91 (2002) 8411.

Google Scholar

[6] H. B. de Carvalho, M. J. S. P. Brasil, J. C. Denardin, and M. Knobel. Phys. Stat. Sol. (a) 201 (2004) 2361.

Google Scholar

[7] S. Witanachchi, H. Abou Mourad, and P. Mukherjee. J. Appl. Phys. 99 (2006) 073710.

Google Scholar

[8] V. V. Balashev, V. V. Korobtsov, T. A. Pisarenko and L. A. Chebotkevich. Tech. Phys. 56, (2011) 1501.

Google Scholar

[9] V. A. Vikulov, V. V. Balashev, T. A. Pisarenko, A. A. Dimitriev, and V. V. Korobtsov. Tech. Phys. Lett. 38, (2012) 772.

DOI: 10.1134/s106378501208024x

Google Scholar

[10] S. Jain, A. O. Adeyeye, and C. B. Boothroyd. J. Appl. Phys. 97 (2005) 093713.

Google Scholar

[11] N. V. Volkov A. S. Tarasov, E. V. Eremin, S. N. Varnakov, S. G. Ovchinnikov, S. M. Zharkov. J. Appl. Phys. 109 (2011) 123924.

Google Scholar

[12] M. Fonin, R. Pentcheva, Yu. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. Rüdiger, and G. Güntherodt. Rev. B 72 (2005) 104436.

Google Scholar

[13] S. M. Sze. Physics of Semiconductor Devices, 3rd Edition. John Wiley & Sons, Inc., (2007).

Google Scholar

[14] Tatsuo Yamamoto and Mitsutaka Morimoto. Appl. Phys. Lett. 20, (1972) 269.

Google Scholar