Fabrication of Nano-Sized Silicon Powder by Adiabatic Compression

Article Preview

Abstract:

The article describes a new method for nano-sized silicon powder fabrication. The method is based on monosilane thermal decomposition at the adiabatic compression. Homogeneous conditions of chemical transformation ensure a high product purity and monodispersity. Both amorphous and crystalline silicon powders were obtained in the experiments.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

80-85

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Ishchenko, G.V. Fetisov, L.A. Aslan. Nanosilicon: properties, production, use, methods of research and monitoring. M. FIZMATLIT, 2011. - 648. (in Russian).

Google Scholar

[2] A.I. Gusev Nanomaterials, nanostructures, nanotechnology. - Moscow: Fizmatlit, 2005. - 416 p. (in Russian).

Google Scholar

[3] Patent RU 2359906, IPC C01B33/02, 31. 08. 2007, Preparation of nanocrystalline silicon powders.

Google Scholar

[4] M. Liu, G. Lu, J. Chen. Synthesis, assambly and characterization of Si nanocrystals and Si-nanocrystal-carbon nanotube hybrid structures / Nanotechnology. 2008. V. 19. P. 265705.

DOI: 10.1088/0957-4484/19/26/265705

Google Scholar

[5] I. Umezu, M. Takata, A. Sugimura. Surface hydrogeneration of silicon nanocrystals during pulsed laser ablation of silicon target in hydrogen background gas / J. Appl. Phys. 2008. V. 103. P. 114309.

DOI: 10.1063/1.2938051

Google Scholar

[6] Wiggers H., Starke R., Roth P. Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase Reactor / Chem. Eng. Technol. 2001. V. 24, № 3. Р. 261.

DOI: 10.1002/1521-4125(200103)24:3<261::aid-ceat261>3.0.co;2-k

Google Scholar

[7] V.N. Demin, S.P. Vashenko, A.I. Saprykin, B.A. Pozdnjakov. Preparation of polycrystalline silicon decomposition of monosilane in the plasma arc torch / Conference on Crystal Growth, films and defect structure of silicon. Silicon 2002,. Abstracts. M.: 2002. S. 184.

Google Scholar

[8] N.N. Bylinkina, S.P. Mushtakova, V.A. Olejnik and others / Technical Physics Letters. 1996. T. 22. №6. P. 43-47.

Google Scholar

[9] A. Vladimirov, S. Korovin, A. Surkov, E. Kelm, V. Pustovoy. Synthesis of Luminescent Si Nanoparticles Using the Laser-Induced Pyrolysis / Laser Physics/ 2011. V. 21, № 4. P. 830.

DOI: 10.1134/s1054660x11080032

Google Scholar

[10] O. Sublemontier, F. Lacour, Y. Leconte, N. Herlin-Boime, C. Reynaud. CO2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications / J. of Alloys and Compounds. 2009. V. 483. P. 499; 9. L.T. Cancham, 1990, Appl. Phys. Lett, 57, 1046.

DOI: 10.1016/j.jallcom.2008.07.233

Google Scholar

[11] O. Gadalova, A. Kotenko, A. Kravchenko, H. Mirkurbanov, V. Odinokov. Creation of polycrystalline silicon electronic quality from monosilane. / Nanoindustry 1/2010. (in Russian).

Google Scholar

[12] Patent RU 2329196, IPC C01B33/04 (2006. 01) C01B33/029, 06. 10. 2006 Preparation of silane and polysilicon of high purity.

Google Scholar

[13] Patent application: Method for producing of a nanostructures of silicon. Date of receipt by FIPS: 12. 09. 2013. Registration number: 2013125647.

Google Scholar

[14] Y.A. Kolbanovskiy Pulse compression of gases in chemistry and technology/ M. NAUKA 1982. – 240 p. (in Russian).

Google Scholar

[15] Patent RU 2299175, MEC C01B3/34, F02B43/12, F02B47/02, 12. 02. 2006. Method for producing of synthesis-gas and installation for its realization.

Google Scholar

[16] Patent application: The device for adiabatic compression of gases. Date of receipt by FIPS: 29. 01. 2013. Registration number: 2013103951.

Google Scholar