Ab Initio Calculation of Cobalt Interlayer Size Influence on Tensile Strength in WC-Co Hard Alloy

Article Preview

Abstract:

Quantum-mechanical calculations were performed for investigation of tensile strength for WC/Co/WC systems with the thickness of the cobalt interlayer of 3 and 7 atomic layers. It has been shown that the cobalt interlayer increasing leads to decreasing of the tensile strength from 17 GPa to 14 GPa. In addition, vacancy-type defect formation reduces the tensile strength of about 2 times.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

86-89

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. C. Koch. Nanostructured Materials - Processing, Properties and Potential Applications, William Andrew Publishing/Noyes Publishing, New York, (2002).

Google Scholar

[2] T. Ryu, H. Y. Sohn, K. S. Hwang, Z. Z. Fang, Chemical vapor synthesis and characterization of nanosized WC-Co composite powder and post-treatment, Ind. Eng. Chem. Res. 47 (2008) 9384-9385.

DOI: 10.1021/ie800322y

Google Scholar

[3] L. Fu, L.H. Cao and Y.S. Fan, Two step synthesis of nanostructured tungsten carbide–cobalt powders, Scr. Mater. 44 (2001) 1061-1068.

DOI: 10.1016/s1359-6462(01)00668-6

Google Scholar

[4] S. Lay, C.H. Allibert, M. Christensen, G. Wahnström, Morphology of WC grains in WC-Co alloys, Materials Science and Engineering A 486 (2008) 253-261.

DOI: 10.1016/j.msea.2007.09.019

Google Scholar

[5] M. Christensen, G. Wahnström, S. Lay, C.H. Allibert, Morphology of WC grains in WC–Co alloys: Theoretical determination of grain shape, Acta Mater. 55 (2007) 1515-1521.

DOI: 10.1016/j.actamat.2006.10.013

Google Scholar

[6] Y. Zhong, H. Zhu, L. L. Shaw, R. Ramprasad, The equilibrium morphology of WC particles – A combined ab initio and experimental study, Acta Mater. 59 (2011) 3748-3757.

DOI: 10.1016/j.actamat.2011.03.018

Google Scholar

[7] A.A. Gnidenko, First principle simulation of the Co layers behavior on a surface of hexagonal tungsten carbide, Physics Procedia 23 (2012) 132-135.

DOI: 10.1016/j.phpro.2012.01.033

Google Scholar

[8] W. Betteridge, The properties of metallic cobalt, Prog. Mater. Sci. 24 (1979) 51-142.

Google Scholar

[9] A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility, Scripta Materialia. 49 (2003) 651–656.

DOI: 10.1016/s1359-6462(03)00397-x

Google Scholar

[10] X. Gonze at al., ABINIT: First-principles approach to material and nanosystem properties, Computer Phys. Comm. 180 (2009) 2582-2634.

Google Scholar

[11] H. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[12] W. Kohn, J.L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[13] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory, Comp. Phys. Commun. 119 (1999) 32-67.

DOI: 10.1016/s0010-4655(98)00201-x

Google Scholar

[14] L.E. Toth. Transition Metal Carbides and Nitrides. Academic Press, New York, (1971).

Google Scholar

[15] M. Lee and R. S. Gilmore, Single crystal elastic constants of tungsten monocarbide, J. Mater. Sci. 17 (1982) 2657-2660.

DOI: 10.1007/bf00543901

Google Scholar

[16] H. L. Brown, P. E. Armstrong and C. P. Kempter, Elastic Properties of Some Polycrystalline Transition‐Metal Monocarbides, J. Chem. Phys. 45 (1966) 547-549.

DOI: 10.1063/1.1727602

Google Scholar

[17] A. Buch. Pure Metals Properties. A Scientific-Technical Handbook. 1st edition, ASM International and Freund Publishing House Ltd., Ohio, (1999).

Google Scholar