Magnetic and Structural Properties of Nanocomposite ZnO-Fe3O4 Films Prepared by Solid-State Synthesis

Article Preview

Abstract:

A simple method for obtaining ZnO-Fe3O4 nanocomposites using solid-state reaction Zn + 3Fe2O3 ZnO + 2Fe3O4 is suggested. An analysis of the characteristics and properties of ZnO-Fe3O4 nanocomposites was carried out by a combination of structural and physical methods (X-ray diffraction, scanning electron microscopy, photoelectron spectroscopy, Mössbauer measurements, X-ray fluorescent analysis, and magnetic measurements). The magnetization of the hybrid ZnO-Fe3O4 films is equal to 440 emu/cm3. The resulting Fe3O4 nanoparticles are surrounded by a ZnO shell and have sizes ranging between 20 and 40 nm.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

158-162

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Paul, D. Kufer, A Miiller, S. Briick, E. Goering, M. Kamp, J. Verbeeck, H. Tian, G. Van Tendeloo, N. J. C. Ingle, M. Sing, and R. Claessen, Appl. Phys. Lett. 98 (2011) 012512.

DOI: 10.1063/1.3540653

Google Scholar

[2] P. Li. B. L Guo. H. L Bai, J Appl. Phys. 109 (2011) 013908.

Google Scholar

[3] A. Janotti, C. G. V. Walle, Rep. Prog. Phys. 72 (2009) 126501.

Google Scholar

[4] R. Turgeman, S. Tirosh, A. Gedanken, Chem. Eur. J. 10 (2004) 1845.

Google Scholar

[5] F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ion. 32-33 (1989) 198.

DOI: 10.1016/0167-2738(89)90222-1

Google Scholar

[6] Z. J. Fabian, S. D. Sarma, Rev. Mod. Phys. 76 (2004) 323.

Google Scholar

[7] J. J. Versluijs, M. A. Bari. J. M. D. Coey, Phys. Rev. Lett. 87 (2001) 026601.

Google Scholar

[8] J. Xia, A. Wang, X. Liu, Z. Su, Appl. Surf. Sci. 257 (2011) 9724.

Google Scholar

[9] Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, RSC Adv. 3 (2013) 3309.

Google Scholar

[10] N. -H. Cho, T. -C. Cheong, J. H. Min, J. H. Wu, S. J. Lee, D. Kim, J. -S. Yang, S. Kim, Y. K. Kim, S. -Y. Seong, Nat. Nanotech. 6 (2011) 675.

Google Scholar

[11] S. Singh, K. C. Barick, D. Bahadur, J. Mater. Chem. A. 1 (2013) 3325.

Google Scholar

[12] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[13] A. Nielsen, A. Brandlmaier, M. Althammer, W. Kaiser, M. Opel, J. Simon, W. Mader, S. T. B. Goennenwein,  R. Gross, Appl. Phys. Lett. 93 (2008) 162510.

DOI: 10.1063/1.2998576

Google Scholar

[14] P. Li, B. L. Guo,  H. L. Bai, J. Appl. Phys. 109 (2011)013908.

Google Scholar

[15] S. Brück, M. Paul, H. Tian, A. Müller, D. Kufer, C. Praetorius, K. Fauth, P. Audehm, E. Goering, J. Verbeeck, G. Van Tendeloo, M. Sing,  R. Claessen, Appl. Phys. Lett. 100 (2012) 081603.

DOI: 10.1063/1.3687731

Google Scholar

[16] R. Master, R. J. Choudhary,  D. M. Phase,  Thin Solid Films 542 (2013) 76.

Google Scholar

[17] R. Skomski and J. M. D. Coey, Permanent Magnetism, Institute of Physics, Bristol, (1999).

Google Scholar

[18] W. S. Wellons, Z. Gai, J. Shen, J. Bentley, J. E. Wittig, C. M. Lukehart, J. Mater. Chem. C. 1 (2013) 5976-5980.

Google Scholar