Magnetoimpedance of Amorphous Ribbons with Polymer Covering

Article Preview

Abstract:

Magnetic properties and magnetoimpedance were studied for as-cast Fe5Co75Si4B16 rapidly quenched amorphous ribbons and Fe5Co75Si4B16/polymer amorphous ribbon based composites with the following polymer coverings: modified rubber solution in o-xylene, copolymer solution of butyl methacrylate and methacrylic acid in isopropanol and solution of polymethylphenyl resin in toluene. All selected composites showed very good adhesion of the coverings and allowed us to provide long term temperature measurements, including measurements under stress. Polymer coverings have an effect on the temperature sensitivity of the impedance value. The present study demonstrates the promising future for the development of magnetically active conductor/polymer composites for creating new sensors. Modification of the composition and thickness of the polymer coverings can be the basis for creation of the detectors with a unique set of functional properties. Polymer covering can perform the protective and reinforcing role that is particularly important in the case of nanocrystalline alloys and the polymer covering can also affect and improve the functional properties of the magnetic core.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

325-330

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Pang, S. Huang, Q. Cai, S. Yao, K. Zeng, C.A. Grimes, Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device, Biosens. Bioelectron. 23 (2007) 295-299.

DOI: 10.1016/j.bios.2007.07.004

Google Scholar

[2] V.E. Makhotkin, B.P. Shurukhin, V.A. Lopatin, P. Yu. Marchukov, Yu.K. Levin, Magnetic field sensors based on amorphous ribbons, Sens. Act. A 27 (1991) 759–762.

DOI: 10.1016/0924-4247(91)87083-f

Google Scholar

[3] G.V. Kurlyandskaya, V. Fal Miyar, Surface modified amorphous ribbon based magnetoimpedance biosensor, Biosens. Bioelectron. 22 (2007) 2341–2345.

DOI: 10.1016/j.bios.2006.07.011

Google Scholar

[4] A. Kumar, S. Mohapatra, V. Fal-Miyar, A. Cerdeira, J. A. García, H. Srikanth, J. Gass, G.V. Kurlyandskaya, Magnetoimpedance biosensor for Fe3O4 nanoparticle intracellular uptake evaluation, Appl. Phys. Lett. 91 (2007) 143902.

DOI: 10.1063/1.2790370

Google Scholar

[5] V. Fal Miyar, M. A. Cerdeira, J. A. Garca, A. P. Potatov, A. R. Pierna, F. F. Marzo, J. M. Barandiarán, G. V. Kurlyandskaya, Giant magnetoimpedance of electrochemically surface modified Co-Based amorphous ribbons, IEEE Trans. Magn. 44 (2008).

DOI: 10.1109/tmag.2008.2002245

Google Scholar

[6] A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, G. V. Kurlyandskaya, Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73. 5Si16. 5B6Nb3Cu1 ribbons, Tech. Phys. 56 (2011).

DOI: 10.1134/s1063784211030182

Google Scholar

[7] R. E. Mistler, E.R. Twiname, Tape Casting: Theory and Practice, The American Ceramic Society, 2000, 298 p.

Google Scholar

[8] A. P. Safronov, T. V. Terziyan, Ye. G. Kalinina, A. S. Galyautdinova, I. S. Puzyrev, Yu. G. Yatluk, Adsorption and adhesion of polymers at the interface of YSZ nanoparticles in liquid phase and composite film, Nanotechnologies in Russia 2 (2007).

Google Scholar

[9] A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudriavcev, A. A. Gavriliuk, G. V. Zaharov, M. S. Derevyanko, Automatic measuring complex for magnetoimpedance spectroscopy of soft magnetic materials, Nauchnoe Priborostroenie 20 (2010).

Google Scholar

[10] Y. W. Rheem, C. G. Kim, C. O. Kim, S. S. Yoon, Current sensor application of asymmetric giant magnetoimpedance in amorphous materials, Sens. Actuators, A 106 (2003) 19-21.

DOI: 10.1016/s0924-4247(03)00096-7

Google Scholar

[11] E. Katz, I. Willner, Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors, Electroanalysis 15 (2003) 913-947.

DOI: 10.1002/elan.200390114

Google Scholar