Magnetic Behavior of Single Ni Nanowires and its Arrays Embedded in Highly Ordered Nanoporous Alumina Templates

Article Preview

Abstract:

We report on magnetization reversal and geometry dependent magnetic anisotropy of Ni nanowire arrays electrodeposited in nanoporous alumina templates. Using micromagnetic simulation we have found that magnetization reversal mechanism in arrays with different nanowire diameters is curling. This magnetic behavior appears with propagation of the domain wall along a nanowire. The calculations have been proven by the analysis of hysteresis curves. To explain magnetic properties of closely-spaced nanowire arrays we have taken into consideration the magnetostatic interaction between adjacent nanowires and their structural defects, like as boundary grains. The investigated magnetic domain pattern of individual bended nanowires confirms rather complicated magnetization reversal mechanism than either coherent rotation of magnetization or its curling. Competition between the shape and magnetoelastic anisotropies can induce an unusual zigzag-like domain pattern in a single nanowire.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

298-305

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Nasirpouri, New Developments in Electrodeposition and Pitting Research, A. El Nemr, Ed. India: Research Signpost Publication, 2007, p.55–92.

Google Scholar

[2] R. Bellamkonda, T. John, B. Mathew, M. DeCoster, H. Hegab, J. Palmer, D. Davis, Microfabrication of nanowires-based GMR biosensor, Proc. SPIE 7318, 2009, 73181H.

DOI: 10.1117/12.819076

Google Scholar

[3] L. Thomas, R. Moriya, Ch. Rettner, S.S.P. Parkin, Dynamics of Magnetic Domain Walls Under Their Own Inertia, Science 330, 2010, pp.1810-1813.

DOI: 10.1126/science.1197468

Google Scholar

[4] B.D. Terris, Fabrication challenges for patterned recording media, JMMM 321, 2009, pp.512-517.

Google Scholar

[5] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett. 79 (9), 2001, pp.1360-1362.

DOI: 10.1063/1.1399006

Google Scholar

[6] J. Escrig, D. Altbir, M. Jaafar, D. Navas, A. Asenjo, M. Vazquez, Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure, Phys. Rev. B 75, 2007, pp.1-5.

DOI: 10.1103/physrevb.75.184429

Google Scholar

[7] A. Asenjo, M. Jaafar, D. Navas, and M. Vázquez, Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays, J. Appl. Phys. 100, 2006, pp.023909-1.

DOI: 10.1063/1.2221519

Google Scholar

[8] T. G. Sorop, C. Untiedt, F. Luis, M. Kröll, M. Raşa, and L. J. de Jongh, Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy, Phys. Rev. B 67, 2003, pp.014402-1.

DOI: 10.1103/physrevb.67.014402

Google Scholar

[9] K. Ounadjela, I. L. Prejbeanu, L. D. Buda, U. Ebels, M. Hehn, Spin Electronics, Edited by M.J. Thornton, M. Ziese, Lecture Notes in Physics, vol. 569, 2001, pp.332-378.

DOI: 10.1007/3-540-45258-3_15

Google Scholar

[10] F. Nasirpouri, P. Southern, M. Ghorbani, A. Irajizad, W. Schwarzacher, GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes, JMMM, 309 (2007) 35-39.

DOI: 10.1016/j.jmmm.2006.04.035

Google Scholar

[11] A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, R. Mahmoodi, S. M. Peighambari, M. G. Hosseini , F. Nasirpouri, High-density nickel nanowire arrays for data storage applications, J. Phys.: Conf. Ser. 345, 2012, p.012011.

DOI: 10.1088/1742-6596/345/1/012011

Google Scholar

[12] A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, R. Mahmoodi, S. M. Peighambari, M. G. Hosseini , F. Nasirpouri, Geometry Dependent Magnetic Properties of Ni Nanowires Embedded in Self-Assembled Arrays, Physics Procedia 22, 2011, p.549.

DOI: 10.1016/j.phpro.2011.11.085

Google Scholar

[13] OOMMF software, http: /math. nist. gov/oommf.

Google Scholar

[14] Naeem Ahmad, J.Y. Chen, ·W.P. Zhou, D.P. Liu, X.F. Han, Magnetoelastic Anisotropy Induced Effects on Field and Temperature Dependent Magnetization Reversal of Ni Nanowires and Nanotubes, J. Supercond. Nov. Magn. 24, 2011, p.785–792.

DOI: 10.1007/s10948-010-1016-1

Google Scholar