[1]
F. Nasirpouri, New Developments in Electrodeposition and Pitting Research, A. El Nemr, Ed. India: Research Signpost Publication, 2007, p.55–92.
Google Scholar
[2]
R. Bellamkonda, T. John, B. Mathew, M. DeCoster, H. Hegab, J. Palmer, D. Davis, Microfabrication of nanowires-based GMR biosensor, Proc. SPIE 7318, 2009, 73181H.
DOI: 10.1117/12.819076
Google Scholar
[3]
L. Thomas, R. Moriya, Ch. Rettner, S.S.P. Parkin, Dynamics of Magnetic Domain Walls Under Their Own Inertia, Science 330, 2010, pp.1810-1813.
DOI: 10.1126/science.1197468
Google Scholar
[4]
B.D. Terris, Fabrication challenges for patterned recording media, JMMM 321, 2009, pp.512-517.
Google Scholar
[5]
K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, Hexagonally ordered 100 nm period nickel nanowire arrays, Appl. Phys. Lett. 79 (9), 2001, pp.1360-1362.
DOI: 10.1063/1.1399006
Google Scholar
[6]
J. Escrig, D. Altbir, M. Jaafar, D. Navas, A. Asenjo, M. Vazquez, Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure, Phys. Rev. B 75, 2007, pp.1-5.
DOI: 10.1103/physrevb.75.184429
Google Scholar
[7]
A. Asenjo, M. Jaafar, D. Navas, and M. Vázquez, Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays, J. Appl. Phys. 100, 2006, pp.023909-1.
DOI: 10.1063/1.2221519
Google Scholar
[8]
T. G. Sorop, C. Untiedt, F. Luis, M. Kröll, M. Raşa, and L. J. de Jongh, Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy, Phys. Rev. B 67, 2003, pp.014402-1.
DOI: 10.1103/physrevb.67.014402
Google Scholar
[9]
K. Ounadjela, I. L. Prejbeanu, L. D. Buda, U. Ebels, M. Hehn, Spin Electronics, Edited by M.J. Thornton, M. Ziese, Lecture Notes in Physics, vol. 569, 2001, pp.332-378.
DOI: 10.1007/3-540-45258-3_15
Google Scholar
[10]
F. Nasirpouri, P. Southern, M. Ghorbani, A. Irajizad, W. Schwarzacher, GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes, JMMM, 309 (2007) 35-39.
DOI: 10.1016/j.jmmm.2006.04.035
Google Scholar
[11]
A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, R. Mahmoodi, S. M. Peighambari, M. G. Hosseini , F. Nasirpouri, High-density nickel nanowire arrays for data storage applications, J. Phys.: Conf. Ser. 345, 2012, p.012011.
DOI: 10.1088/1742-6596/345/1/012011
Google Scholar
[12]
A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, R. Mahmoodi, S. M. Peighambari, M. G. Hosseini , F. Nasirpouri, Geometry Dependent Magnetic Properties of Ni Nanowires Embedded in Self-Assembled Arrays, Physics Procedia 22, 2011, p.549.
DOI: 10.1016/j.phpro.2011.11.085
Google Scholar
[13]
OOMMF software, http: /math. nist. gov/oommf.
Google Scholar
[14]
Naeem Ahmad, J.Y. Chen, ·W.P. Zhou, D.P. Liu, X.F. Han, Magnetoelastic Anisotropy Induced Effects on Field and Temperature Dependent Magnetization Reversal of Ni Nanowires and Nanotubes, J. Supercond. Nov. Magn. 24, 2011, p.785–792.
DOI: 10.1007/s10948-010-1016-1
Google Scholar