Temperature Dependence of Magnetic Saturation in Electrodeposited Nanocrystalline Nickel Films

Article Preview

Abstract:

We report on experimental results of the temperature dependence of inductive (total) magnetic moment and remanent magnetic moment at saturation field for electrodeposited nanocrystalline Ni films with thicknesses ranging from 350 nm to 20 μm. We have found that the amplitude of roughness and crystallite size significantly affected the remanent saturation magnetic moment and coercivity.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Kim H., Estrin Y., Strength and strain hardening of nanocrystalline materials, Materials Science and Engineering A. 2008. V. 483-484. P. 127.

DOI: 10.1016/j.msea.2006.09.168

Google Scholar

[2] Meyers M.A., Mishra A., Benson D.J., Mechanical properties of nanocrystalline materials, Progress in Material Science. 2006.V. 51. P. 427.

DOI: 10.1016/j.pmatsci.2005.08.003

Google Scholar

[3] Wang N., Wang Z., Aust K.T., Erb U., Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall Mater. 1995.V. 43.P. 519.

DOI: 10.1016/0956-7151(94)00253-e

Google Scholar

[4] Panda C.S., Cooper K.P., Nanomechanics of Hall-Petch relationship in nanocrytalline materials, Progress in Matetrials Science. 2009.V. 54. P. 689.

DOI: 10.1016/j.pmatsci.2009.03.008

Google Scholar

[5] Erb U., Electrodeposited nanocrystals: synthesis, structure, properties and future applications, Canadian Metallurigical Quarterly. 1995. V. 34. P. 275.

DOI: 10.1179/cmq.1995.34.3.275

Google Scholar

[6] Moti E., Shariat M.H., Bahrololoom M.E., Elecrodeposition of nanocrytallin enicel by using rotating cylindrical electrodes, Materials Chemistry and Physics. 2008.V. 111. P. 469.

DOI: 10.1016/j.matchemphys.2008.04.051

Google Scholar

[7] Jeong D.H., Gonzalez F., Palumbo G., Aust K.T., Erb U., The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings, Scripta Mater. 2001.V. 44.P. 493.

DOI: 10.1016/s1359-6462(00)00625-4

Google Scholar

[8] Nevskaya S.M., Nikolaev S.A. et al, Unusual catalytic properties of nanostructured nickel films obtained by laser electrodispersion, Kinetics and Catalysis. 2006. V. 47. P. 638.

DOI: 10.1134/s0023158406040203

Google Scholar

[9] Wang L., Zhang J., Gao Y., Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings alkaline solution, Scripta Materialia. 2006.V. 55.P. 657.

DOI: 10.1016/j.scriptamat.2006.04.009

Google Scholar

[10] Cziraki A., Fogarassy B., Gerocs I., Toth-Kadar E., Bakanyi I., Microstructure and growh of electrodeposited nanocrystalline nickel foils, J. Mater. Sci. 1994. V. 29.P. 4771.

Google Scholar

[11] Aus M.J., Szpunar B., El-Sherik A.M., Erb U., Palumbo G. and Aust K.T., Magnetic Properties of Bulk Nanocrystalline Nickel, Scripta Metall. 1992. V. 27. P. 1639.

DOI: 10.1016/0956-716x(92)90158-b

Google Scholar

[12] El-sherik A.M., Erb U., Microstructural evolution in pulse plated nickel electrodeposits, Surface and Coatings Technolog. 1997.V. 88. P. 70.

DOI: 10.1016/s0257-8972(96)02928-3

Google Scholar

[13] Robertson A., Erb U., Palumbo G., Practical application for electrodeposited nanocrystalline materials, NanoStructured Materials. 1999. V. 12.P. 1035.

DOI: 10.1016/s0965-9773(99)00294-9

Google Scholar

[14] Warren B.E., X-Ray Diffraction, Dover Publications, USA. 1990. 381 p.

Google Scholar

[15] Samardak A.S., Kharitonskii P.V., Vorobyev Yu.D. and Chebotkevich L.A., Interlayer exchange coupling in Co/Cu/Co films, The Physics of Metals and Metallography, 98 (2004) 360-367.

Google Scholar

[16] Herzer G., Grain size dependence of coercivity and permeabilityin nanocrystalline ferromagnets, IEEE Trans. On Magn. 1990. V. 26. P. 1397.

DOI: 10.1109/20.104389

Google Scholar

[17] Li S.P., Samand A., Lew W.S., Xu Y.B., Bland J.A.C., Magnetic domain reversal in ultrathin Co(001) films probed by giant magnetoresistance measurements, Phys. Rev. B. 2000. V. 61. P. 6871.

DOI: 10.1103/physrevb.61.6871

Google Scholar