Electronic Structure of Nonstoichiometric LaMnO3-x Calculated in the Coherent Potential Approximation

Article Preview

Abstract:

A method for electronic structure calculations of strongly correlated materials based on the coherent potential approximation is formulated and implemented. The evolution of the electronic structure of the LaMnO perovskite system in dependence on oxygen deficiency is studied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

46-51

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev. 156 (1967) 809-813.

DOI: 10.1103/physrev.156.809

Google Scholar

[2] W. Metzner and D. Vollhardt, Correlated lattice fermions in d=∞ dimensions, Phys. Rev. Lett. 62 (1989) 324-328.

Google Scholar

[3] H.J. Vidberg and J.W. Serene, Solving the Eliashberg equations by means of N-point Padé approximants, J. Low Temp. Phys. 29 (1977) 179-192.

DOI: 10.1007/bf00655090

Google Scholar

[4] M.A. Korotin, N.A. Skorikov, E.Z. Kurmaev, D.A. Zatsepin, and S.O. Cholakh, Electronic structure and magnetic properties of iron doped TiO2 (rutile): XPS measurements and CPA calculations, Solid State Phenom., this volume.

DOI: 10.4028/www.scientific.net/ssp.215.28

Google Scholar

[5] A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B 52 (1995) R5467–R5470.

DOI: 10.1103/physrevb.52.r5467

Google Scholar

[6] B. Dabrowski, S. Kolesnika, A. Baszczuk, O. Chmaissem, T. Maxwell, and J. Mais, Structural, transport, and magnetic properties of RMnO3 perovskites (R = La, Pr, Nd, Sm, 153Eu, Dy), J. Solid State Chem. 178 (2005) 629-637.

DOI: 10.1016/j.jssc.2004.12.006

Google Scholar

[7] O.K. Andersen and O. Jepsen, Explicit, first-principles tight-binding theory, Phys. Rev. Lett. 53 (1984) 2571-2574.

DOI: 10.1103/physrevlett.53.2571

Google Scholar

[8] V.I. Anisimov, D.E. Kondakov, A.V. Kozhevnikov, I.A. Nekrasov, Z.V. Pchelkina, J.W. Allen, S. -K. Mo, H. -D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Full orbital calculation scheme for materials with strongly correlated electrons, Phys. Rev. B 71 (2005).

DOI: 10.1103/physrevb.71.125119

Google Scholar

[9] T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Electronic structure of La1-xSrxMnO3 studied by photoemission and x-ray-absorption spectroscopy, Phys. Rev. B 51 (1995) 13942-13951.

DOI: 10.7567/jjaps.32s3.258

Google Scholar

[10] J.B.A.A. Elemans, B. Van Laar, K.R. Van Der Veen, B.O. Loopstra, The crystallographic and magnetic structures of La1−xBaxMn1−xMexO3 (Me=Mn or Ti), J. Solid State Chem. 3 (1971) 238-242.

DOI: 10.1016/0022-4596(71)90034-x

Google Scholar

[11] K.I. Kugel and D.I. Khomskii, The Jahn-Teller effect and magnetism: transition metal compounds, Sov. Phys. Usp. 25 (1982) 231-256.

DOI: 10.1070/pu1982v025n04abeh004537

Google Scholar

[12] R. Krüger, B. Schulz, S. Naler, R. Rauer, D. Budelmann, J. Bäckström, K.H. Kim, S-W. Cheong, V. Perebeinos, and M. Rübhausen, Orbital ordering in LaMnO3 investigated by resonance Raman spectroscopy, Phys. Rev. Lett. 92 (2004) 097203-1 – 097203-4.

DOI: 10.1103/physrevlett.92.097203

Google Scholar