Experimental and Numerical Investigations of TBC Behaviour after Aging, Subjected to Tension and Bending

Article Preview

Abstract:

Thermal Barrier Coatings (TBCs) have been extensively used in aircraft engines to improve durability and performance. They protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment.Testing of coated metallic alloys, subjected to ageing process, allows determination of the TBCs properties. In this paper we performed 2 tests: uniaxial tension and bending. The aging of samples was carried out in 1000°C for times: 48h, 89h, 185h and 353h. Thermally Grown Oxide (TGO) layer thickness (SEM observations) and the strain level corresponding to damage of the TBCs were determined experimentally.The experimental results were used to build numerical model in Abaqus program. Brittle cracking damage model was applied to describe of the TBC layer degradation. Surface based cohesive behavior was used to model delamination of the interface between a bond coat (BC) and a top coat (TC).The proposed numerical model describes with high accuracy experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 216)

Pages:

128-133

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[2] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[3] T. Sadowski, Gradual degradation of two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209-211.

DOI: 10.1016/j.commatsci.2012.01.034

Google Scholar

[4] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.

DOI: 10.1016/j.commatsci.2004.10.005

Google Scholar

[5] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.

DOI: 10.1016/j.msea.2006.03.004

Google Scholar

[6] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.

DOI: 10.1016/j.commatsci.2006.03.022

Google Scholar

[7] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Comp. Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[8] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite. Comput. Mat. Sci. 43 (2008) 235-241.

DOI: 10.1016/j.commatsci.2007.07.030

Google Scholar

[9] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[10] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.

DOI: 10.1016/j.commatsci.2007.07.051

Google Scholar

[11] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.

DOI: 10.1016/j.commatsci.2008.08.019

Google Scholar

[12] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci. 45 (2009) 624-632.

DOI: 10.1016/j.commatsci.2008.07.011

Google Scholar

[13] M. Birsan, H. Altenbach., T. Sadowski, V. Eremeyev, D. Pietras, Deformation analysis of functionally graded beams by the direct approach. Comp. Part B 43 (2012) 1315-1328.

DOI: 10.1016/j.compositesb.2011.09.003

Google Scholar

[14] V. Burlayenko, T. Sadowski, Effective elastic properties of foam-filled honeycomb cores of sandwich panels. Comp. Struct. 92 (2010) 2890-2900.

DOI: 10.1016/j.compstruct.2010.04.015

Google Scholar

[15] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comput. Mat. Sci. 50 (2011) 1326-1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[16] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comput. Mat. Sci. 52 (2012) 293-297.

DOI: 10.1016/j.commatsci.2011.02.027

Google Scholar

[17] T. Sadowski, P. Golewski, The Analysis of Heat Transfer and Thermal Stresses in Thermal Barier Coatings under Exploitation, Defect and Diffusion Forum 326-328 (2012) 530-535.

DOI: 10.4028/www.scientific.net/ddf.326-328.530

Google Scholar

[18] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comput. Mat. Sci. 64 (2012) 285 – 288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[19] G. L. Golewski, T. Sadowski, P. Golewski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[20] G. L. Golewski, T. Sadowski, Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age, Solid State Phenomena 188 (2012) 158-163.

DOI: 10.4028/www.scientific.net/ssp.188.158

Google Scholar

[21] Abaqus Documentation.

Google Scholar

[22] W. G. Mao, C. Y. Dai, L. Yang, Y. C. Zhou, Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures, Int J Fract 151 (2008) 107–120.

DOI: 10.1007/s10704-008-9246-y

Google Scholar

[23] Y. Yamazaki, A. Schmidt, A. Scholz, The determination of the delamination resistance in thermal barrier coating system by four-point bending tests, Surface & Coatings Technology 201 (2006) 744–754.

DOI: 10.1016/j.surfcoat.2005.12.023

Google Scholar

[24] C. Pfeiffer, E. Affeldt, M. Göken, Miniaturized bend tests on partially stabilized EB-PVD ZrO2 thermal barrier coatings, Surface & Coatings Technology 205 (2011) 3245–3250.

DOI: 10.1016/j.surfcoat.2010.11.047

Google Scholar

[25] H. Aleksanoglu, A. Scholz, M. Oechsner, C. Berger, M. Rudolphi, M. Schütze, W. Stamm, Determining a critical strain for APS thermal barrier coatings under sernice relevant loading conditions, Int. J. Fatigue 53 (2013) 40-48.

DOI: 10.1016/j.ijfatigue.2011.11.018

Google Scholar

[26] L. Marsavina, T. Sadowski, Kinked crack at bi-material ceramic interface – numerical determination of fracture parameters, Comput. Mat. Sci. 44 (2009) 941-950.

DOI: 10.1016/j.commatsci.2008.07.005

Google Scholar

[27] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress, Comput. Mat. Sci. 45 (2009) 693-697.

DOI: 10.1016/j.commatsci.2008.06.005

Google Scholar

[28] L. Marsavina, T. Sadowski, Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int. J. Frac. 145 (2007) 237-243.

DOI: 10.1007/s10704-007-9124-z

Google Scholar

[29] I. Ivanov, T. Sadowski, D. Pietras, Crack propagation in functionally graded strip under thermal shock. Eur. Phys. J. Special Topics 222 (2013) 1587-1595.

DOI: 10.1140/epjst/e2013-01947-3

Google Scholar