[1]
J.A. Buckwalter, H.J. Mankin, Articular cartilage Part I: tissue design and chondrocyte-matrix interactions, J Bone Joint Surg Am., 79 (1997) 600-611.
DOI: 10.2106/00004623-199704000-00021
Google Scholar
[2]
V.C. Mow, A. Ratcliffe, Structure and function of articular cartilage and meniscus, Basic orthopaedic biomechanics, Lippincott-Raven, Philadelphia, US, (1997) 113–177.
Google Scholar
[3]
W.R. Trickey, G.M. Lee, F. Guilak, Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage, J Orthop Res., 18 (2000) 891–898.
DOI: 10.1002/jor.1100180607
Google Scholar
[4]
E. M Darling, S. Zauscher, F. Guilak, Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy, Osteoarthritis Cartilage, 14, (2006) 571–579.
DOI: 10.1016/j.joca.2005.12.003
Google Scholar
[5]
E.J. Koay, A.C. Shieh, K.A. Athanasiou, Creep indentation of single cells, J Biomech Eng., 125, (2003) 334–34.
DOI: 10.1115/1.1572517
Google Scholar
[6]
K.A. Athanasiou, B.S. Thoma, D.R. Lanctot, D. Shin, Agrawal C.M., LeBaron R.G.: Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell, Biomaterials 20, 23–24, (1999) 2405–2415.
DOI: 10.1016/s0142-9612(99)00168-4
Google Scholar
[7]
C. Qu, H.M. Karjalainen, H.J. Helminen, M.J. Lammi, The lack of effect of glucosamine sulphate on aggrecan mRNA expression and 35S-sulphate incorporation in bovine primary chondrocytes, Biochim Biophys Acta., 1762, 4, (2006) 453-459.
DOI: 10.1016/j.bbadis.2006.01.005
Google Scholar
[8]
J.E. Sader, J.W.M. Chon, P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers, Rev Sci Instrum., 70, (1999) 3967-3969.
DOI: 10.1063/1.1150021
Google Scholar
[9]
C. Florea, M. Dreucean, M. S Laasanen, A. Halvari, Determination of Young's Modulus using AFM Nanoindentation. Applications on Bone Structures, Proceedings of the 3rd International E-Health and Bioengineering Conference (EHB), Iasi, Romania, (2011).
Google Scholar
[10]
L. Ng, H.H. Hung, A. Sprunt, S. Chubinskaya, C. Ortiz, A.J. Grodzinsky, Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix, J Biomech., 40, 5, (2006), 1011-23.
DOI: 10.1016/j.jbiomech.2006.04.004
Google Scholar
[11]
R. Vargas-Pinto, H. Gong, A. Vahabikashi, M. Johnson, The effect of the endothelial cell cortex on atomic force microscopy measurements, Biophys J., 105, 2, (2013) 300-309.
DOI: 10.1016/j.bpj.2013.05.034
Google Scholar
[12]
E. M. Darling, M. Topel, S. Zauscher, T.P. Vail, F. Guilak, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41, (2008) 454–464.
DOI: 10.1016/j.jbiomech.2007.06.019
Google Scholar
[13]
R.K. Korhonen, M. Wong, J. Arokoski, R. Lindgren, E.B. Helminen, J.S. Jurvelin, Importance of the superficial tissue layer for the indentation stiffness of articular cartilage, Med Eng Phys., 24, 2, (2002), 99-108.
DOI: 10.1016/s1350-4533(01)00123-0
Google Scholar
[14]
F. Guilak, L. G. Alexopoulos, M. A. Haider, H. P. Ting-Beall, L. A. Setton, Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization, Ann Biomed Eng., 33, 10, (2005).
DOI: 10.1007/s10439-005-4479-7
Google Scholar
[15]
A. R. Harris, G. T. Charras, Experimental validation of atomic force microscopy-based cell elasticity measurements, Nanotechnology, 22, (2011) 345102.
DOI: 10.1088/0957-4484/22/34/345102
Google Scholar
[16]
P. Carl, H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch. 457, (2008) 551–559.
DOI: 10.1007/s00424-008-0524-3
Google Scholar
[17]
F.P. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nolin Soft Matter Phys., 72, (2005) 021914.
DOI: 10.1103/physreve.72.021914
Google Scholar