Determination of Mechanical Properties of Chondrocytes in Articular Cartilage Using Atomic Force Microscopy

Article Preview

Abstract:

Atomic Force Microscopy (AFM) based nanoindentation is a widely used technique for measuring mechanical properties of living cells, providing information for understanding their mechanobiological behavior. However, very local properties of cell surfaces have not been characterized earlier. The goal of this study was to develop an AFM-based technique to determine local elastic properties of bovine articular chondrocytes. The Youngs modulus of chondrocytes was 19.3 ± 5.6 kPa for spread cells and 10 ± 4.1 kPa for the round cells. The results were compared to previous studies in which different techniques were used to obtain more global properties of chondrocytes. Our findings suggest that using nanosized AFM tips, the very local cell properties can be measured.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 216)

Pages:

134-139

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Buckwalter, H.J. Mankin, Articular cartilage Part I: tissue design and chondrocyte-matrix interactions, J Bone Joint Surg Am., 79 (1997) 600-611.

DOI: 10.2106/00004623-199704000-00021

Google Scholar

[2] V.C. Mow, A. Ratcliffe, Structure and function of articular cartilage and meniscus, Basic orthopaedic biomechanics, Lippincott-Raven, Philadelphia, US, (1997) 113–177.

Google Scholar

[3] W.R. Trickey, G.M. Lee, F. Guilak, Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage, J Orthop Res., 18 (2000) 891–898.

DOI: 10.1002/jor.1100180607

Google Scholar

[4] E. M Darling, S. Zauscher, F. Guilak, Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy, Osteoarthritis Cartilage, 14, (2006) 571–579.

DOI: 10.1016/j.joca.2005.12.003

Google Scholar

[5] E.J. Koay, A.C. Shieh, K.A. Athanasiou, Creep indentation of single cells, J Biomech Eng., 125, (2003) 334–34.

DOI: 10.1115/1.1572517

Google Scholar

[6] K.A. Athanasiou, B.S. Thoma, D.R. Lanctot, D. Shin, Agrawal C.M., LeBaron R.G.: Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell, Biomaterials 20, 23–24, (1999) 2405–2415.

DOI: 10.1016/s0142-9612(99)00168-4

Google Scholar

[7] C. Qu, H.M. Karjalainen, H.J. Helminen, M.J. Lammi, The lack of effect of glucosamine sulphate on aggrecan mRNA expression and 35S-sulphate incorporation in bovine primary chondrocytes, Biochim Biophys Acta., 1762, 4, (2006) 453-459.

DOI: 10.1016/j.bbadis.2006.01.005

Google Scholar

[8] J.E. Sader, J.W.M. Chon, P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers, Rev Sci Instrum., 70, (1999) 3967-3969.

DOI: 10.1063/1.1150021

Google Scholar

[9] C. Florea, M. Dreucean, M. S Laasanen, A. Halvari, Determination of Young's Modulus using AFM Nanoindentation. Applications on Bone Structures, Proceedings of the 3rd International E-Health and Bioengineering Conference (EHB), Iasi, Romania, (2011).

Google Scholar

[10] L. Ng, H.H. Hung, A. Sprunt, S. Chubinskaya, C. Ortiz, A.J. Grodzinsky, Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix, J Biomech., 40, 5, (2006), 1011-23.

DOI: 10.1016/j.jbiomech.2006.04.004

Google Scholar

[11] R. Vargas-Pinto, H. Gong, A. Vahabikashi, M. Johnson, The effect of the endothelial cell cortex on atomic force microscopy measurements, Biophys J., 105, 2, (2013) 300-309.

DOI: 10.1016/j.bpj.2013.05.034

Google Scholar

[12] E. M. Darling, M. Topel, S. Zauscher, T.P. Vail, F. Guilak, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41, (2008) 454–464.

DOI: 10.1016/j.jbiomech.2007.06.019

Google Scholar

[13] R.K. Korhonen, M. Wong, J. Arokoski, R. Lindgren, E.B. Helminen, J.S. Jurvelin, Importance of the superficial tissue layer for the indentation stiffness of articular cartilage, Med Eng Phys., 24, 2, (2002), 99-108.

DOI: 10.1016/s1350-4533(01)00123-0

Google Scholar

[14] F. Guilak, L. G. Alexopoulos, M. A. Haider, H. P. Ting-Beall, L. A. Setton, Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization, Ann Biomed Eng., 33, 10, (2005).

DOI: 10.1007/s10439-005-4479-7

Google Scholar

[15] A. R. Harris, G. T. Charras, Experimental validation of atomic force microscopy-based cell elasticity measurements, Nanotechnology, 22, (2011) 345102.

DOI: 10.1088/0957-4484/22/34/345102

Google Scholar

[16] P. Carl, H. Schillers, Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch. 457, (2008) 551–559.

DOI: 10.1007/s00424-008-0524-3

Google Scholar

[17] F.P. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nolin Soft Matter Phys., 72, (2005) 021914.

DOI: 10.1103/physreve.72.021914

Google Scholar